
The Imaginative Generative Adversarial Network: Automatic Data
Augmentation for Dynamic Skeleton-Based Hand Gesture and Human

Action Recognition

Junxiao Shen, John Dudley and Per Ola Kristensson
Department of Engineering, University of Cambridge, United Kingdom

Abstract— Deep learning approaches deliver state-of-the-art
performance in recognition of spatiotemporal human motion
data. However, one of the main challenges in these recognition
tasks is limited available training data. Insufficient training data
results in over-fitting and data augmentation is one approach
to address this challenge. Existing data augmentation strate-
gies based on scaling, shifting and interpolating offer limited
generalizability and typically require detailed inspection of the
dataset as well as hundreds of GPU hours for hyperparameter
optimization. In this paper, we present a novel automatic data
augmentation model, the Imaginative Generative Adversarial
Network (GAN), that approximates the distribution of the
input data and samples new data from this distribution. It
is automatic in that it requires no data inspection and little
hyperparameter tuning and therefore it is a low-cost and low-
effort approach to generate synthetic data. We demonstrate
our approach on small-scale skeleton-based datasets with a
comprehensive experimental analysis. Our results show that
the augmentation strategy is fast to train and can improve
classification accuracy for both conventional neural networks
and state-of-the-art methods.

I. INTRODUCTION

Hand gesture interaction has the potential to provide users
with a fluid and unencumbered method of interfacing with
computer systems. As a consequence, it has attracted con-
siderable research attention in both hand gesture recognition
(HGR) and deployment of such strategies to diverse domains
including smart homes, augmented reality, virtual reality,
manufacturing, and smart cars. Human action recognition
(HAR) is another popular research area with many real-
world applications, such as surveillance event detection,
video retrieval, and smart rehabilitation [28].

One of the main challenges in HGR/HAR research is
that factors, such as the complexity of hand gesture struc-
tures/action structures, differences in hand size/human size,
and hand postures/human postures, can influence the per-
formance of the recognition algorithm. While deep neural
networks have had remarkable success in HGR [1], [36],
[36] and HAR [33], [8], problems in over-fitting or a failure
to learn a high-performance model may arise when training
deep neural networks with insufficient training data. How-
ever, increasing the amount of training data through data
augmentation can help alleviate this issue and improve model
performance.
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Classical data augmentation methods increase the volume
of the training set by applying transformations to raw data,
which may be realistic or unrealistic, such as SpecAug-
ment [26], cutout [7] and mixup [37]. However, these
methods are not always effective on all datasets. Further,
the above classical data augmentation methods are limited
because they are structured such that they transform existing
samples into slightly altered additional samples. Moreover,
hyperparameter optimization for a classical augmentation
policy usually requires a large computation budget using
a brute force approach that can easily cost hundreds of
GPU hours. In addition, there are many different ways of
altering the samples. This highlights a need to find a way of
generating new data efficiently.

Another important requirement for data augmentation
methods is that they produce diversity in data which is rep-
resentative of natural user variation. Achieving this through
simple transformations, such as rotation, scaling and noise
injection, is non-trivial. While such methods act as a per-
turbation model that increase a neural network’s robustness,
this may not necessarily translate into better generalization.
Ideally, the distribution of intra and inter user variability is
captured and reflected by the data augmentation method. In
this paper, we propose a high-efficiency sampling strategy
that can directly estimate the training data distribution and
generate new samples based on the estimated distribution.

Generative Adversarial Networks (GANs) have gained
much popularity in modeling data distributions directly. A
GAN is a powerful tool to generate unobserved data using
a minimax game without supervision [13]. Inspired by the
recent success of GAN-based data augmentation in speech
and vision domains [9], [15], we propose a novel variant
we call the Imaginative GAN which assists in discovering
an approximation of the true distribution of input data. The
novelty of this work is the following:

1) We propose a data-efficient unsupervised learning
model for skeleton-based data augmentation: the Imag-
inative GAN. A trained Imaginative GAN can gener-
alize to new data with unseen classes.

2) Since it does not require prior knowledge and inspec-
tion of input data for training, the Imaginative GAN
allows an automatic and cross-domain data augmenta-
tion process with little hyperparameter tuning.

The Imaginative GAN leverages a CycleGAN [38] struc-
ture and extends prior work with two novel modifications.978-1-6654-3176-7/21/$31.00 ©2021 IEEE



Dataset Model Augmentation Accuracy Improvement Standard Error Time (hrs) Contribution

SHREC’17 Track

LSTM
CD 72.0% · ±0.94% · 15 times faster,

Accuracy increased by 3.5%
CAD 76.6% 4.6% ±2.04% 75.2
GAD 80.1% 8.1% ±0.64% 5

CNN
CD 4.30% · ±0.00% · 5 times faster,

Accuracy increased by 1.8%
CAD 78.0% 73.7% ±0.77% 25.2
GAD 79.8% 75.5% ±0.57% 5

MSR Action3D

LSTM
CD 18.4% · ±10.64% · 5 times faster,

Accuracy increased by 8.8%
CAD 58.5% 40.1% ±6.54% 11.2
GAD 67.3% 48.9% ±0.85% 2.1

CNN
CD 4.73% · ±0.42% · 2 times faster,

Accuracy increased by 54.04%
CAD 5.76% 1.03% ±1.12% 4.1
GAD 59.8% 55.07% ±2.62% 2.1

TABLE I: The Augmentation column describes three different types of data: clean data (CD), which is denoised and padded
raw data; classical augmented data (CAD), which is data augmented using a classical approach; and GAN-augmented data
(GAD), which is data generated from the Imaginative GAN. The data is used to train two different models, the first is
LSTM-based and the second is CNN-based. The data is from two public datasets, the SHREC’17 Track dataset and the
MSR Action3D dataset. Accuracy is the mean validation accuracy of the trained model performed on CD, CAD, or GAD
dataset. Improvement is the absolute improvement in accuracy resulting from the augmented data (either CAD or GAD)
compared to the clean data (CD). Standard Error is the standard deviation of validation accuracy divided by the square
root of the number of seeds (we use four random seeds). Time is the time taken for the hyperparameter optimization of the
classical approach, or the time taken for the Imaginative GAN to converge. Contribution is the improvement brought by
GAD for both accuracy and time compared to CAD. The data augmented by the Imaginative GAN provides higher accuracy
and is more time-efficient.

First, CycleGAN was originally proposed to transfer latent
attributes between two domains whereas we use it here to
add variability to data within the same domain. Second, we
introduce an unsupervised training strategy reminiscent of
teacher forcing that incorporates the ground truth input data
at each time step. These novel modifications improve training
stability and permit using roughly one tenth of the amount
of training data normally required.

We evaluate our approach on two public datasets (the
SHREC’17 Track dataset [6] and the MSR Action3D
dataset [19]) using two recognition models: an LSTM and
a CNN modified from prior work [25], [18]. We compare
performance resulting from using augmented data from the
Imaginative GAN (GAD) with classically augmented data
(CAD). The classical approach adds realistic transformations
to the data, including scaling, shifting, interpolating, and
adding Gaussian noise. This approach is described in detail
in Section III. As a reference, we also evaluate the effects
of using the denoised and padded raw data without any
augmentation, a condition we refer to as clean data (CD).
We evaluate performance using two main criteria. First, the
time required to find the optimized strategy for recognition
accuracy in the classical approach using grid search, or the
time required for the Imaginative GAN to converge. Second,
the validation accuracy on each type of data.

In summary, we will demonstrate that the Imaginative
GAN gives rise to the following four key properties:

1) Higher accuracy: As shown in Table I, the recogni-
tion models trained on GAN-augmented data (GAD)
achieve the best validation accuracy for both the
SHREC’17 Track and MSR Action3D datasets.

2) Increased stability: Performance is more stable on
models trained on GAD compared to models trained

on CD and CAD, which is observed in the smaller
standard error (see Table I).

3) Temporal efficiency: Table I shows that the time taken
for the classical approach to find the best combination
of hyperparameters is long and varies depending on
the choice of recognition model. If the model is
large and difficult to converge, the time required is
increased. In contrast, the Imaginative GAN is fast
to train and the augmentation strategy is decoupled
from the recognition model. It is possible to reduce
time in the classical approach using a coarser grid
search. However, as a result, the validation accuracy
may then decrease due to suboptimal hyperparameters.
Therefore, in the classical approach there is a time-
accuracy trade-off.

4) Generalization to new classes: The Imaginative GAN
is effective in generalizing to data with unseen classes.
In other words, as long as the data to train the
Imaginative GAN is in the same domain as the data
with new classes, the trained model is able to generate
realistic samples of the new data.

II. RELATED WORK

The term data augmentation originated from Tanner and
Wong [31], linking augmented data with observed data via
a many-to-one mapping M : Yaug → Yobs. There are
different types of data augmentation strategies. A simple
but effective approach is to add Gaussian noise, which is
not particularly domain-specific yet can help prevent the
model from over-fitting [21]. Other techniques use various
realistic transformations, such as elastic distortions, as well
as distortions in scale, orientation, and position of training
images [4]. Color adjustment, blurring and sharpening, white
balance, and other distortions have also been previously



used on CIFAR-10 and ImageNet [17], [39]. Unrealistic
distortions, such as cutout [7] and mixup [37], help regularize
the training of the neural networks. However, these classical
augmentation approaches usually require prior knowledge
of the data and inspection of the data in addition to time-
consuming hyperparameter optimization.

An alternative strategy is to augment the training set
by modeling the data distribution directly using generative
models, such as Bayesian approaches or GANs [32]. GANs
can learn generative models via adversarial training to pro-
duce samples from the approximated real data distribution.
Different variants of GANs have been proposed to generate
realistic natural images [35], [10]. In speech processing,
GANs have been applied to speech synthesis [16], acoustic
scene classification [24], and speech recognition [15]. GANs
have also been used to generate synthetic path data to
improve the performance of a continuous path keyboard [23]
and to jointly optimize data augmentation and network
training in human pose estimation from images [27]. To our
knowledge, there is no prior work investigating using GANs
to synthesize skeleton data for data augmentation.

III. GENERATING SYNTHETIC HUMAN MOTION DATA

In this paper, we compare two augmentation strategies.
The first is a classical data augmentation strategy, which
uses different sequential and stochastic transformations. The
transformations are sometimes arbitrary and arise from man-
ual inspection of the data. Usually, these strategies cannot be
transferred across different data domains. The second strat-
egy is the Imaginative GAN, which approximates the real
data distribution and then samples from this approximated
distribution.

A. Classical Data Augmentation

From inspection of the raw skeleton data, we observe
natural variation in aspects such as size, posture and the
speed of performing the actions/gestures. Thus such vari-
ations can be applied as transformations. We modified the
data augmentation approach from Núñez et al. [25] to make
transformations more realistic. The major difference is that
we sample the factors from a Gaussian distribution instead
of a Uniform distribution. This is because our preliminary
experiments revealed that a Gaussian distribution leads to
better validation recognition accuracy with lower standard
error than a Uniform distribution. Acknowledging that there
are hundreds of specifications a researcher may choose to
use, we have chosen the following specifications to simulate
the process of how a researcher would approach the data
augmentation problem using a classical approach, balancing
subjective realism in transformations and a desire for high
objective performance:

1) Scale: A scale factor, sampled from N (1, σ2
scale), is

applied to each data point globally, where σscale is a
hyperparameter.

2) Shift: A global displacement (dx, dy, dz), sampled
from N (0, σ2

shift), is applied to all the data points,
where σshift is a hyperparameter.

(a) The Imaginative GAN is trained
using a CycleGAN structure with
a cycle consistency loss. The latent
attributes are transferred within the
input datasets X and Y . G and
F are the two generators, DX and
DY are the two discriminators.

(b) The generator in the Imagina-
tive GAN has one GRU layer and
one fully connected layer. It has a
teacher forcing-like mechanism so
the input is a ground truth sample
and the output is an altered sample.
T is the length of the sample.

Fig. 1: Structure of the Imaginative GAN and its generator.

3) Time Interpolation: Cubic interpolation is used to
interpolate the skeleton sequence. The interpolated
positions are sampled from a Uniform distribution over
the length of the sequence.

4) Noise: A number of joints are randomly selected and
then Gaussian noise sampled from N (0, σ2

noise) is ap-
plied to the positions, where σnoise is a hyperparameter.
The number of joints selected is randomly generated
between 1 to 8 for the SHREC’17 Track dataset and 1
to 4 for the MSR Action3D dataset. The number here
is chosen by preliminary experiments to decrease the
total number of hyperparameters. The noise added to
each selected joint is different. However, the noise is
the same at every timestep along the entire sequence.

B. Imaginative GAN

A GAN can be characterized as training a pair of networks
competing against each other—it is a minimax game [13].
In a GAN, a generator attempts to generate as real samples
as possible while a discriminator attempts to distinguish
between the generated and real samples. Conventional GAN
structures require noise as input. Training a conventional
GAN is challenging because not only do the model param-
eters oscillate, destabilize, and sometimes never converge,
but in addition the generator may collapse and produce a
limited variety of samples. A large amount of data and time-
consuming hyperparameter selections are required to train
effective GAN models. To tackle the above challenges, we
introduce a mechanism reminiscent of teacher forcing in the
generator. This mechanism uses ground truth data as the
input at each timestep. This leads to the Imaginative GAN
converging more easily and demanding less data overall. The
distinction from typical teacher forcing is that we are not
seeking to force the output towards some target, but rather
to facilitate augmentations applied with respect to the ground
truth sample. We also utilize the CycleGAN structure in
transferring the latent attributes within the dataset, unlike
the original work for unpaired image translation [38], which
transfers styles between two different datasets.



1) Networks: The Imaginative GAN has a similar struc-
ture to CycleGAN, as shown in Figure 1a. It has two
GAN structures: each GAN has one generator and one
discriminator. The generator is shown in Figure 1b. The
generator has a Gated Recurrent Unit (GRU) layer and a
fully connected layer. No activation function is used in the
fully connected layer. A GRU makes each recurrent unit
adaptively capture dependencies of different time scales [3].
Unlike an LSTM unit, a GRU does not have separate memory
cells. The generator has a mechanism reminiscent of teacher
forcing that uses the ground truth data as input for every
GRU cell. Teacher forcing is often used in the training of
sequence to sequence models, such as machine translation
models. To our knowledge, this is the first time that a teacher
forcing mechanism is used in this way in a GAN. The use
of teacher forcing enables the model to easily converge and
become fast to train. The input sequence to the generator
is [x1, x2, ..., xT ] where T is the length of the sequence
and the output sequence of the generator is [x′

1, x
′
2, ..., x

′
T ].

The discriminator has one fully connected layer attached to
a network identical to the generator to output a scalar for
discrimination.

2) Formulation: The goal of the Imaginative GAN is
to learn the latent attributes, such as behavioral attributes
(speed of performing the actions/gestures etc.,) and physical
attributes (human/hand sizes etc.,). Thereafter, these learned
latent attributes are applied to other data. That is, in mathe-
matical terms, we have two generators to learn two mapping
functions, G : X → Y and F : Y → X , between two
domains, X and Y , given samples {xi}Ni=1 where xi ∈ X

and {yj}Nj=1 where yj ∈ Y . In our case, each domain
represents a separate partition of the dataset. The model also
has two discriminators DX and DY to discriminate between
the generated sample F (y) or G(x) and the real data x or y.
The generator G tries to generate synthetic data G(x) that
has similar attributes from domain Y with objective:

Lgen(G,DY , X) = Ex∼pdata(x) [logDY (G(x))] (1)

The discriminator DY tries to distinguish G(x) from real
data y with objective:

L(G,DY , X, Y ) = Ey∼pdata(y) [logDY (y)]

+ Ex∼pdata(x) [log(1−DY (G(x)))]
(2)

Cycle consistency loss is used to encourage F (G(x)) ≈ x
and G(F (y)) ≈ y [38]:

Lcyc(G,F ) = Ey∼pdata(y) [∥G(F (y))− y∥1]
+ Ex∼pdata(x) [∥F (G(x))− x∥1]

(3)

Noise is injected at each translation step and identity loss
is introduced to reduce the noise:

Lidentity(G) = Ey∼pdata(y) [∥G(y)− y∥1]
+ Ex∼pdata(x) [∥G(x)− x∥1]

(4)

The full objective for the generator G is:

L(G,F,DY ) = Lgen(G,DY , X)

+ λ1Lcyc(G,F )

+ λ2Lidentity(G)

(5)

where λ1 and λ2 are the two weights of the losses. We are
using different partitions of the same dataset for {xi}Ni=1

and {yi}Ni=1. The generator is then effectively approximating
the input data distribution through optimization by stochastic
gradient descent in mini-batches.

IV. EXPERIMENTS

Affinity and diversity are two interpretable, easy-to-
compute metrics used for parameterizing augmentation per-
formance [12] and to quantitatively evaluate the properties of
the three types of data: clean data (CD), classical augmented
data (CAD), and GAN augmented data (GAD).

1) Affinity: Affinity quantifies the shift between the clean
data distribution and the augmented data distribution.
Affinity is calculated using the definition from Gontijo-
Lopes et al. [12]: the difference between the validation
accuracy of a model trained on clean data and tested
on clean data and the validation accuracy of the same
model tested on an augmented validation set.

2) Diversity: Diversity quantifies the complexity of the
augmented data with respect to the model and op-
timization procedure [12]. In this paper, diversity is
calculated as the difference between the validation
loss and the training loss. The intuition is that the
more diverse the data is, the higher the difference
between the training loss and validation loss since the
distance between the training data and validation data
distribution will be larger. This is different from the
method in Gontijo-Lopes et al. [12], where they solely
use the training loss. However, only using training loss
is model dependent, and may also be data dependent in
certain circumstances. Therefore, to compare the two
very different data augmentation polices, we use the
difference between training loss and validation loss
since it is more consistent and independent.

We would like the augmented data to have a high affinity
and a reasonable level of diversity. The reasoning of how
affinity and diversity affect the relationship between the
augmented data and clean data is clearly described and
illustrated by Gontijo-Lopes et al. [12].

A. Evaluation Datasets

There are several public dynamic gesture datasets [22],
[6], [11]. Different human action datasets have also been
introduced [19], [34], [29]. The datasets differ in the com-
plexity of gestures or actions, the number of individuals, the
gesture or action classes, and the types of sensors used for
data collection. We selected datasets that provide skeleton
data, and we were particularly interested in datasets of small
volume. This scoping stems from the fact that for large
datasets, such as NTU RGB+D 120 [14], data augmentation
may not be required. Therefore, we used the following
datasets for evaluation.



1) MSR Action3D: The MSR Action3D dataset [19]
provides 20 actions with a total of 567 sequences.
We are using the established Protocol A [25] for the
training and testing split.

2) SHREC’17 Track: The SHREC’17 Track dataset [6]
has 2,800 sequences which contain 14 gestures per-
formed by 28 individuals with one or multiple fingers.
The sequences are labeled according to 14 classes if
the finger number information is not included or 28
label classes if the finger number information is in-
cluded (14G and 28G respectively). The split between
training and testing is defined and well-established in
the literature [6].

3) DHG-14/28: The DHG-14/28 dataset [5] includes 14
gestures with 2,800 sequences provided by 20 indi-
viduals. It has the same hand joints, gesture classes
and collection method as the SHREC’17 Track dataset.
Note that this dataset is only used in the evaluation of
model generalizability and impact on state-of-the-art
technique performance. We use the leave-one-subject-
out experimental protocol for training and testing.

B. Recognition Model

We need a recognition model to evaluate the augmentation
policies. We used two basic well-established effective neural
network models, one CNN-based and one LSTM-based, as
the recognition models, instead of some hypothetical highly
complicated bespoke networks. Our motivation is that this
approach serves to demonstrate the overall generalizability of
the data augmented from the Imaginative GAN. To prevent
a network bias caused by a specific type of network favoring
a specific dataset, we evaluate two different neural networks
as the recognition model: LSTM and CNN. An LSTM is
clearly well-suited to modeling the temporal relationships
in the sequential skeleton data while a CNN is well-suited
to modeling the spatial relationships. To this end, Liu et
al. [20] explicitly separated the hand gestures into posture
variants reflecting their spatial properties and hand move-
ments reflecting their temporal properties. Therefore, these
two different networks focus on different aspects of the data
and provide breadth to the analysis of the impact of data
augmentation. Each model is configured as follows:

1) LSTM: We adopted the LSTM model by Lai et
al. [18]. We added a self-attention layer before the clas-
sification layer. This helps the model determine which
part of the network it should give more attention [2].

2) CNN: We adopted the model by Núñez et al. [25]
where the structure of the network consists of a CNN
attached to a fully-connected multilayer perceptron. It
is a model they use during the pretraining stage.

Note that both the LSTM and the CNN model are not
optimized using techniques such as pretraining CNN models
or fine-tuning the hyperparameters (number of hidden units,
number of layers, learning rate and dropout rate, etc.). Our
focus is on carrying out a fair comparison of the regulariza-
tion effect brought by the augmented data, not the model.

C. Data Preparation

The raw data is smoothed using a Savitzky–Golay filter to
remove noise. This is achieved by fitting successive subsets
of adjacent data points with a low degree polynomial using
linear least squares. The window length is set to 7, and the
order of the polynomial used to fit the data is set to 3. The
smoothed data is then padded with the last row of the data to
produce the clean data (CD). Subsequent data augmentations
are performed on this clean data.

D. Training

1) Recognition Models: The models are trained on sparse
categorical cross-entropy loss. We use Adam as the optimizer
and the learning rate is set to 0.0001. The learning rate
scheduler is set to be reduced on plateau, and we set the
patience to 3. Early stopping is used, and we set the patience
to 5. Patience is the number of epochs to wait before reducing
the learning rate, or an early stop when no progress is made
on the validation set. We use Sparse Categorical Accuracy
to evaluate the performance of the model. The training batch
size is 64.

2) Imaginative GAN: We use the training scheme from
the literature [38]. The training batch size is 64. λ1 and λ2

in the objective function for the generators are set to 10 and
5 respectively. The number of hidden units for the GRU cell
in the generator is 512. We used a computer that has 3 ×
Nvidia GeForce RTX 3090 GPU, 1 × Ryzen 9 3970x CPU.

V. RESULTS

Table I shows the overall results. We can see from the
contribution column that the Imaginative GAN is not only
fast to train but also leads to augmented data with higher
accuracy and more stable performance when trained on the
recognition models. In the remainder of this section, we focus
primarily on the results obtained with the LSTM recognition
model on the SHREC’17 Track dataset to illustrate the
benefits afforded by the Imaginative GAN.

A. Generalization

For the SHREC’17 Track dataset and the LSTM network,
we randomly selected four gestures and excluded them
in the training of the Imaginative GAN. We then used
the generators in the trained Imaginative GAN to generate
synthetic data of the four gestures from the real gesture
data. Figure 3 shows that the four gestures on average do
not show degradation in their accuracy compared to the
clean data and the optimized classical augmentation data.
The optimized classical augmentation strategy is discussed
in V-B. This demonstrates that the model can generalize to
data with new classes. We performed the same test with the
CNN and MSR Action 3D dataset and also observed this
generalization capability.

The above result shows that the Imaginative GAN can
generalize to new classes. We also performed an evaluation
to determine whether the Imaginative GAN can generalize to
a new dataset. To this end we trained the Imaginative GAN
on the DHG-14/28 dataset and used this model to generate
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Fig. 2: (a) The results of the first round search (coarse grid search) for optimal hyperparameters of the classical approach.
Circled data points in red are what we will select to inspect and use for a second round search. (b) The results of the second
round search (fine grid search). The results from GAD and CD are also shown to compare affinity, diversity, and accuracy.
(c) The combination of the results of the first and second round search are presented to show an overview of how affinity
and diversity relates to accuracy. We observe that we want affinity to be as high as possible and a diversity at around 1.
Results are from experiments when using LSTM as the recognition model and SHREC’17 Track as the evaluation dataset.
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Fig. 3: Individual accuracy from the LSTM recognition
model of the gestures for the three types of data: clean
data (CD), GAN-augmented Data (GAD), and classical aug-
mented data (CAD). Gesture classes in red are the new
classes that are excluded from the training of the Imaginative
GAN. Synthetic data of the new classes achieved comparable
accuracy with the synthetic data of the classes seen in
the training phase. The 1 or 2 after the gesture classes
indicates the number of fingers used to perform the gesture.
1 represents one finger and 2 indicates the entire hand.

augmented data for training a CNN and LSTM recognition
model for the SHREC’17 dataset. The CNN recognition
model accuracy was 1.6% higher than that achieved with
the default CAD at 79.6% while the LSTM model accuracy
was 3.2% higher than the default CAD at 79.8%. For both
models, the accuracy achieved by the repurposed Imaginative
GAN was only just short of that obtained by the GAD when
trained on the SHREC’17 dataset.

B. Time Efficiency

This investigation also used the SHREC’17 Track dataset
and the LSTM network. In the classical data augmenta-
tion approach, there are three hyperparameters to optimize:

σscale, σshift and σnoise. There could be more hyperpa-
rameters, and this depends on how many transformations
are applied to the data. Three common ways of performing
hyperparameter optimization are random search, grid search,
and Bayesian optimization. Here we are using grid search to
optimize hyperparameters since it is a simple but effective
method for exploring a regular search space. We carried
out two rounds of search. The first round is a coarse grid
search. We used σscale ∈ [0.1, 0.15, 0.2, 0.25, 0.3], σshift ∈
[0.1, 0.15, 0.2, 0.25, 0.3] and σnoise ∈ [0.1, 0.2, 0.3].

Figure 2a shows the result from the first-round search. We
observe that the combinations in the red selected circles have
good accuracy. We investigated the combinations that pro-
duced these results and performed a second round fine grid
search, that has σscale ∈ [0.1, 0.12, 0.14, 0.18, 0.2], σshift ∈
[0.1, 0.12, 0.14, 0.18, 0.2] and σnoise ∈ [0.05, 0.1, 0.15]. Fig-
ure 2b shows the results from the fine grid search together
with the validation accuracy achieved from the clean data
and GAN augmented data. The optimized hyperparameters
achieved a validation accuracy of 76.6%, which is less
than the accuracy (80.1%) achieved by the GAN-augmented
data. Compared with the 5 GPU hours training time for the
Imaginative GAN, the classical data augmentation approach
costs around 15 times more GPU hours (75.2).

C. Escaping Local Minimum

We now use the CNN model to evaluate the recognition
performance of the data (Table I). We observe that for MSR
Action3D, CNN failed to learn the features from CD and
CAD, which suggests that the model is trapped in a local
optima. In contrast, the GAN-augmented data helped the
recognition model to escape the local minimum.

D. Affinity and Diversity

For the SHREC’17 Track dataset and the LSTM network,
in Figure 2c, we observe, as expected, that the points with
high affinity and diversity around 1.0 have the highest



CD

t+1 t+2 t+3 t+4 t+5 t+6 t+7 t+8 t+9

CAD

t+1 t+2 t+3 t+4 t+5 t+6 t+7 t+8 t+9

GAD

t+1 t+2 t+3 t+4 t+5 t+6 t+7 t+8 t+9

(a) SHREC’17 Track: Swipe Up with one finger
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(b) MSR Action3D: Tennis Swing

Fig. 4: Visualized gesture and action examples illustrating
the difference between the clean data and the classical and
GAN augmented data. Each timestep represents an even split
of the full sequence.

accuracy, and data with low affinity and low diversity cannot
produce a good result. We also observe that a diversity that is
too high can decrease accuracy as the model may fail to learn
the complexity of the data. Therefore, we expect that data
with as high affinity as possible and diversity of around 1.0
will achieve the best recognition accuracy. This is achieved
by the GAN-augmented data. The results from the CNN and
the MSR Action3D dataset were found to highlight the same
advantages of GAD over CD and CAD. Both GAD and CAD
are visualized in Figure 4 in their optimized settings. We see
that GAD maintains a realistic spatial structure while CAD
produces some unrealistic temporal and spatial alterations.
Further, GAD achieves not only good geometric diversities
but also balanced temporal correlations.

E. Ablation Study

We performed an ablation study on the MSR Action3D
dataset to evaluate the importance of the number of hidden
units of the GRU cell in the Imaginative GAN. We tested four
numbers of hidden units: 64, 128, 256 and 512. They lead
to a validation accuracy of 46.4%, 55.1%, 64.2% and 67.3%
respectively. This result can be justified by the reasoning that
more hidden units can encode more information of the input
sequence. A higher number of hidden units only increases the
training time by within 10% which is acceptable. Therefore,
512 hidden units are used for a higher validation accuracy.

Model SHREC’17 Track DHG-14/28
14G 28G 14G 28G

DG-STA [1] +0.7% +0.8% +0.6% +0.4%
DD-Net [36] +0.7% 0.7% +0.6% +0.6%

DSTA-Net [30] +1.0% 0.7% +0.8% +0.5%

TABLE II: Impact of augmented data from the Imaginative
GAN on the performance of state-of-the-art methods. The
values indicate the benefit afforded by GAD over the peak
accuracy achieved in the corresponding publication. Note
that each datasets has two ways of data labelling according
to the finger used (14G and 28G).

F. Impact on State-of-the-Art Recognition Methods

The results presented in the previous subsections illustrate
the benefits of the Imaginative GAN and GAN augmented
data on two basic but well-established recognition models
(CNN and LSTM). Here we show that GAN augmented data
can also benefit state-of-the-art methods for skeleton-based
data discrimination. For this purpose, we performed a search
for state-of-the-art methods for skeleton-based gesture recog-
nition, with the additional criteria that the actual recognition
performance is reported and that the code is publicly avail-
able. This search yielded the following methods: i) Dynamic
Graph-Based Spatial-Temporal Attention (DG-STA) [1]; ii)
Double-Feature Double-Motion Network (DD-Net) [36]; and
iii) Decoupled Spatial-Temporal Attention Network (DSTA-
Net) [30]. Table II summarizes the benefits provided by the
GAN-based augmentation method in improving upon the
recognition accuracy reported in the corresponding papers.
Note that where any of these methods were already using
a data augmentation method, it was removed and replaced
by GAD. The results shown in Table II highlight the broad
utility of the data augmentation approach.

VI. LIMITATIONS AND FUTURE WORK

A potential limitation is the requirement for some tuning of
the learning rate and number of hidden units in the Imagina-
tive GAN. However, in contrast to the huge hyperparameter
space for the classical augmentation approach, tuning just
two hyperparameters is comparatively straightforward and
fast. If a trained model exists, then generating thousands of
augmented data samples takes less than a second.

In theory, the Imaginative GAN is able to approximate
any trajectory. Trajectory data records locations of moving
objects at certain moments, and has been used widely when
researching, for example, human behavior and traffic prob-
lems. We believe fruitful future work is to verify this state-
ment by carrying out experiments on generating sequences
of behaviors/movement from other domains.

VII. CONCLUSIONS

We have proposed an automatic data augmentation tool
that can ‘imagine’ realistic alterations to input data. The data
augmented using the Imaginative GAN is evaluated against
data augmented using a classical approach as well as the
denoised and padded raw data. Our results have demonstrated
that the Imaginative GAN outperforms the classical approach



in mean validation accuracy, standard error, and in the time
cost to find an optimized strategy.

In summary, the Imaginative GAN is superior to simply
adding stochastic and sequential distortions to data. In the
future, we foresee a library of Imaginative GANs trained on
different types of data, allowing researchers to directly down-
load pre-trained Imaginative GANs and instantly generating
their own synthetic data. While the classical approach may
still be a useful tool to prevent over-fitting and increase the
deep learning model’s performance, the Imaginative GAN
can always be used as a baseline to compare against, since
it takes almost zero effort and zero prior knowledge or
inspection of the input data to generate synthetic data using
the Imaginative GAN.
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