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Fig. 1: The conventional approach for supporting mid-air gesture typing in AR is to utilize a cursor and trace visualization in
combination with strict delimitation of gesture start/stop based passing into or out of the keyboard plane. These qualities of the
interface introduce a tendency towards closed-loop interaction due to visual attention being drawn to the visual elements and the care
required in indicating the start and end of a gesture. Eliminating the visual cursor and relaxing the way in which gesture start/stop is
delimited may help promote open-loop interaction and allow users to type more quickly. However, removing the cursor and relaxing
the delimitation can introduce additional error into the articulated trace which must be mitigated by more advanced decoding. We
therefore introduce a novel 3D trajectory decoding method that directly translates users’ 3D trajectories into text without relying on
the trajectories projected onto the 2D keyboard plane.

Abstract— We present a fast mid-air gesture keyboard for head-mounted optical see-through augmented reality (OST AR) that
supports users in articulating word patterns by merely moving their own physical index finger in relation to a virtual keyboard plane
without a need to indirectly control a visual 2D cursor on a keyboard plane. To realize this, we introduce a novel decoding method that
directly translates users’ three-dimensional fingertip gestural trajectories into their intended text. We evaluate the efficacy of the system
in three studies that investigate various design aspects, such as immediate efficacy, accelerated learning, and whether it is possible
to maintain performance without providing visual feedback. We find that the new 3D trajectory decoding design results in significant
improvements in entry rates while maintaining low error rates. In addition, we demonstrate that users can maintain their performance
even without fingertip and gesture trace visualization.

Index Terms—Text Entry, Machine Learning, Augmented Reality

1 INTRODUCTION

Text entry is a fundamental activity [20], and an essential one for opti-
cal see-through augmented reality (OST AR) to become mainstream.
One potentially promising solution to text entry in AR is the gesture
keyboard [26, 43], which allows users to write quickly by articulating
word patterns in relation to a virtual keyboard.

The success of the gesture keyboard has been investigated in prior
work and can at the high-level be attributed to two particular traits: 1) its
relatively high entry rate in relation to competing text entry methods on
mobile devices; and 2) its high familiarity with existing methods, thus
minimizing any learning effort from users [19, 21]. Gesture keyboards
can achieve this by exploiting a familiar QWERTY keyboard layout.
Novice users can exploit this familiarity and write by sliding from key to
key. In doing so they gradually build up motor patterns of frequent word
gesture trajectories due to motor memory consolidation. Once these
patterns have been learned they can be quickly recalled directly from
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motor memory [26,43]. Thus a gesture keyboard provides a continuum
between a complete novice having to trace each word gesture trajectory
on the keyboard, to a complete expert able to rapidly recall gestures for
words directly from motor memory. From a human motor control point-
of-view, the user experiences a smooth transition from slow closed-loop
visual feedback-based writing to fast open-loop direct recall from motor
memory. It is this latter quality—the ability to write open-loop—that
enables the high entry rates that are achievable with practice [26,31,44].

Thus, for a gesture keyboard to be successfully transplanted to
another medium, such as an AR headset, it is important to maintain this
quality of allowing users to quickly recall the word gesture trajectories
directly from motor memory. However, such recall is fast and imprecise
and thus challenging for a system to interpret correctly. It is also
vital the system does not rely on closed-loop interaction, in particular
visual feedback or difficult to manage trace gesture delimitation, for
the user to be able to accurately use the system to write. The unique
qualities of the keyboard interface that can either promote or hinder
open-loop interaction are summarized in Figure 1. This paper proposes
a novel approach to gesture keyboard decoding and interface design
for AR headsets that tackles these design requirements. As we will
demonstrate, our approach delivers mean entry rates of 27 WPM, which
can be compared with the 33 to 45 WPM observed by Reyal et al. [31]
for users gesture typing on their own personal phone in the wild.
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Fig. 2: Summary of the studies presented in this paper.

The central idea is to present the user with a mid-air virtual key-
board and allow the user to articulate word gesture patterns by merely
moving their physical index finger in the vicinity of a mid-air keyboard
plane. Thus, the user does not need to rely on closed-loop interaction
to articulate word gesture trajectories. This provides users with an
experience that eliminates the need for the user to have any concern
regarding whether the system is lagging in its tracking of the finger
position or whether their 3D articulations are intersecting with a virtual
keyboard plane or not. This produces a true physical-virtual text entry
experience unencumbered by current hand tracking limitations and we
hypothesize that realizing such a system enables entry rates that are
potentially comparable to entry rates observed on mobile phones using
commercial gesture keyboards.

However, realizing such a system means tackling three challenges.
First, unlike a touchscreen gesture keyboard, there is a delimitation
challenge: the system has to automatically determine what part of the
user’s 3D trajectory actually constitutes the beginning, middle and end
of a word pattern gesture on the virtual keyboard plane. Further, for the
system to be effective the system must be able to perform this task at a
very high accuracy.

The second challenge is that users cannot be expected to be able to
align their own physical index finger in relation to the virtual keyboard
plane. This alignment problem arises due to both imprecise tracking
and users’ inability to determine their finger location in relation to a
virtual plane. Again, the system must be able to solve this alignment
problem consistently at a very high accuracy.

The third challenge is a lack of data. Unlike traditional touchscreen-
based gesture keyboards, an AR gesture keyboard that successfully
tackles both the delimitation and the alignment challenge at a consistent
high accuracy necessitates a deep learning-based decoder that will
require a large amount of representative training data. However, modern
AR headsets are still in their infancy and the only feasible way to collect
raw training data is to recruit participants and manually collect training
data, which does not scale.

This paper demonstrates that these three challenges can be success-
fully tackled, thereby enabling users to write very fast using an AR
gesture keyboard. This is achieved using a novel decoder consisting
of a neural motion model that uses an attention mechanism to learn a
strong alignment between gestural 3D trajectories and text. The model
is further trained using a new data augmentation scheme and feature
extractor to tackle the lack of training data. This decoding method is
the first technique that directly translates 3D word-gesture trajectories
into text.

We study the efficacy of this system in three studies (Study 1–3), as
summarized in Figure 2. These studies demonstrate that the decoder
is able to accurately infer users’ intended text, users are able to write
quickly and accurately using the system, and users are able to maintain

Fig. 3: Left: Illustration of a user gesturing on a mid-air gesture
keyboard in AR. Right: Appearance of the mid-air gesture keyboard
in AR. The cursor and trace indicate the tracked fingertip position.
The color of the cursor and the sphere on the top right corner of the
keyboard indicates the lift on/off states. Green represents lift on and
red represents lift off. The buttons such as ‘condition’, ‘start’, ‘end’,
and the input boxes such as ‘Subject ID’, ‘Layout ID’ are only used for
experimental purposes. Below the stimuli, there are alternative word
choices. Pressing “Enter” confirms the selection and proceeds to the
next stimulus. Pressing “Delete” removes the previously entered word.
When we remove the visual feedback, it is only the visual cursor and
gesture trace that is removed. The sphere on the top right corner of the
keyboard still indicates the lift on/off states.

their performance even without any fingertip cursor or visual gesture
trace feedback. In an accelerated motor learning task where participants
are asked to repeatedly write single sentences, six out of the eight
participants achieve error-free peak entry rates surpassing 50 WPM
and one participant reached over 70 WPM, illustrating the human
performance potential of this AR gesture keyboard approach. We also
carry out two studies demonstrating that the new 3D design for an AR
gesture keyboard results in a significant 13.1% relative improvement in
entry rate compared to a conventional gesture keyboard derived from
Microsoft Hololens 2 system keyboard. Using an accelerated motor
learning task, we observe a significant 8.7% relative improvement in
favor of the 3D design.

In summary, this paper makes the following contributions:

1. We present a novel word-gesture decoding architecture underpinned
by a) our neural motion model, AE-BLSTM-CTC; and b) our data
augmentation method and feature engineering strategy. The decoder
is the first of its kind in directly translating mid-air 3D word-gesture
trajectories into text and it achieves this by overcoming several critical
challenges encountered when using a mid-air word gesture keyboard
on an AR headset.
2. We propose novel design concepts, including removing the visual
cursor and the 3D gesture keyboard design. The robustness of the
novel word-gesture decoding architecture plays a significant role in
facilitating the evaluations of these novel interface designs in Study 2
and Study 3. Additionally, it should be noted that the impact of these
design changes has not been previously investigated.
3. We open-source this novel word-gesture decoding architecture as
well as the training data to enable designers, developers and researchers
to prototype different mid-air gesture keyboard designs.

2 RELATED WORK

The increasing uptake and growing capabilities of modern AR/VR
Head-Mounted Displays (HMDs) has stimulated greater interest in
supporting efficient text input on these devices. Given the focus of this
paper we limit our discussion of related work to text entry using mid-air
virtual keyboards. Even within this narrow scope, a wide variety of
interaction methods and keyboard designs have been explored.

2.1 Mid-Air Virtual Keyboards
In virtual reality (VR), Yu et al. [40] investigated the performance
of three mid-air text entry alternatives for VR by utilizing the head
movement to control a head-fixed gaze cursor. The three alternatives
are: TapType which requires a user to select a letter by pointing to it
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Fig. 4: Box plots of the three alignment metrics between the gesture plane and rendered keyboard plane for the six participants. The green triangle
shows the mean.

and tapping a button on a gamepad, DwellType which requires a user
to select a letter by pointing to it and dwelling over it for a period of
time, and GestureType which requires a user to perform word-level
input using a gesture typing style (also using a gamepad to indicate
gesture start and finish events). Yu et al. [40] found that users typed at
10.59 WPM, 15.58 WPM, and 19.04 WPM with DwellType, TapType,
and GestureType, respectively. The Wizard-of-Oz study performed by
Dudley et al. [9] suggests that much higher entry rates in the range
of 40 WPM may be achievable with direct touch interaction using
two index fingers on a mid-air VR keyboard. Yi et [39] explored
the feasibility of single-finger typing on mid-air virtual QWERTY
keyboards in VR, addressing the lack of tactile feedback by using a
novel input prediction algorithm and achieving an entry rate of 26.1
WPM with 3.2% uncorrected word-level error rate.

In optical see-through augmented reality (OST AR), Dudley et al.
[11] presented the VISAR keyboard, which is a keyboard for AR
HMDs supporting text entry via a virtualized input surface. After
several design iterations, the system was able to support a mean entry
rate of 17.75 WPM with a mean character error rate of less than 1%. Xu
et al. [38] evaluated alternative text entry methods in AR with different
combinations of selection methods (head, hand, hybrid, and controller)
and input mechanisms (Swype and Tap). The performances of the
different combinations varied from 5 WPM to 15 WPM [38]. Both
Dudley et al. [11] and Xu et al. [38] noted that the system’s performance
is affected by tracking latency and inaccuracy caused by the hardware
(tracking cameras) and the software (gesture detection algorithms).
Dudley et al. [11] reported that the typical lag in hand position tracking
is approximately 220 ms on the HoloLens 1. Although the tracking
capability on the Microsoft HoloLens 2 is much improved, there is still
a noticeable lag and inaccuracy.

The various studies of mid-air text entry methods in AR/VR suggest
typical entry rates of 5 to 26 WPM [10,11,36,38]. Such entry rates may
be inadequate for high-volume text input, especially when compared
to simply using physical keyboards in VR which have been shown to
support fast text entry of around 45 to 67 WPM [18]. Touch typing on
an uninstrumented flat surface also demonstrates fast text entry of 73
WPM in an offline study [32].

2.2 Keyboard Gesture Recognition
Gesture keyboards [19, 43] provide an efficient text entry method by
mapping word gestures drawn on a keyboard layout into words [31].
Gesture keyboards have, since their invention, become an established
input method in modern smartphones [5, 42, 45], smartwatches [12],
tablets [3] and Head Mounted Displays (HMDs) [41]. Reyal et al. [31]
performed a comparative study between touch and gesture text input on
a smartphone both in a lab setting and ‘in the wild’. The text entry rate
reached an average speed of 28 to 39 WPM, depending on the method
and the user’s experience level. Reyal et al. [31] observed that users
tend to prefer gesture entry over touch entry in both focused and mobile
situations. Leiva et al. [27] conducted a large-scale web-based study
and found that gesture typing entry rates typically varied from around
50 WPM for everyday users to around 40 WPM for users who never
otherwise use a gesture keyboard.

SHARK2 [26] is a template matching algorithm for word-gesture
keyboards. Vulture [29], a word-gesture keyboard designed to operate
in mid-air, also used a template matching algorithm. Although the
Vulture keyboard supported mid-air interaction, entry was performed
by moving the hand to control a cursor projected onto the wall and so
the trace actually decoded was 2D rather than 3D. Gesture keyboards
are often unimanual, but Bi et al. [3] created a novel bimanual gesture
text entry system that extends the gesture keyboard paradigm from one
finger to multiple fingers. They designed a multi-stroke gesture recogni-
tion algorithm based on a unimanual gesture recognition algorithm that
is similar to SHARK2. However, this approach introduces learnability
issues and is more applicable in situations where mobile device users
need to hold the device with both hands and type with two thumbs.

Alsharif et al. [2] present a machine learning-based gesture rec-
ognizer designed to address some of the challenges encountered in
mobile gesture typing, such as elision, co-articulation, and high vari-
ability. This recognizer comprises a recurrent neural network and a
Connectionist Temporal Classification (CTC) loss [14]. This approach
provided a recognition accuracy of 89.2%, a 22% absolute improvement
relative to a baseline which is a template-matching-based system simi-
lar to SHARK2. Biju et al. [4] proposed a transformer-based gesture
decoding model to support mobile gesture typing in Indic languages.
The overall accuracy of this model across seven Indic languages varied
from 70-95%. Both Alsharif et al. [2] and Biju et al. [4] were fortunate
in having access to sufficient training data thanks to the maturity of
mobile-phone-based gesture typing. Alsharif et al. [2] collected over
50,000 trajectories, and Biju et al. [4] collected over 190,000 trajec-
tories. No such datasets are readily available or readily collected for
mid-air gesture typing on an AR HMD. Further, the two models pro-
posed by Alsharif et al. [2] and Biju et al. [4] were designed to decode
2D trajectories, whereas our method decodes 3D trajectories directly to
text. To our knowledge, direct decoding of 3D word-gesture trajectories
into text has not been previously explored.

3 THE THREE KEY CHALLENGES

In this section, we revisit the three key challenges that motivate the
design of our AR mid-air gesture keyboard before introducing the
decoding system that addresses these challenges in Section 4.2.

As highlighted in the Introduction, developing a robust and effective
mid-air gesture keyboard for AR requires overcoming three key chal-
lenges: delimitation, alignment and lack of data. We examine each of
these key challenges below with concrete reference to observed user
behaviors when typing in AR on a mid-air gesture keyboard.

We captured typical user behavior by performing a Wizard-of-Oz
study [7] to collect high-quality trajectory data from different subjects
gesturing on different keyboard geometries. We deployed the SHARK2

recognizer [26] into the mid-air gesture keyboard and implemented a
simulated robust error correction mechanism. The keyboard geometry,
in terms of width and aspect ratio, were periodically changed to capture
data across a variety of scales and sizes. The keyboard width ranged
from 100 mm to 600 mm and height-width aspect ratio ranged from
0.1875 to 0.5. Six participants (three male, three female, age mean =



22.7, standard deviation = 3.9) participated in the study. All 6 partici-
pants spent approximately 3 hours performing mid-air gesture typing
during data collection. Data analysis confirmed that participants con-
solidated their experience with the keyboard after 30 minutes of usage.
The stimulus phrase set was taken from the Enron Mobile Corpus [17]
and the MacKenzie phrase set [28]. Overall, we captured 2,428 unique
words and 1,598 phrases (each phrase contains an average of 7.05
words; maximum: 15 words, minimum: 4 words). The stimuli phrases
were selected randomly from the stimulus phrase set. We used this
collected data to train the neural motion model of our decoder, which
will be explained in the next subsection. The keyboard presented to the
participants provided visual feedback indicating the tracked fingertip.

Challenge 1: Delimitation

The major issue observed in the collected dataset regarding delimitation
was the presence of extraneous points at the beginning and end of a
word trace. We refer to the extraneous points at the start of the trace as
the ‘head’ and the extraneous points at the end of the trace as the ‘tail’.
These heads and tails are caused by the user lifting ‘on’ and ‘off’ from
the gesturing plane. Figure 5 shows the head and tail of the trajectory
for the word ‘sweet’ in both the keyboard plane and 3D space.

Challenge 2: Alignment

Our dataset suggests that different users have different perceptions of
the keyboard plane as displayed in the Microsoft HoloLens 2. The tra-
jectories of different users fit into different gesture planes with various
positional and orientation offset from the rendered virtual keyboard
plane. We examined these gesture planes according to three metrics:

1. Distance: the distance of the center of the gesture plane from the
keyboard plane.
2. theta θ : the angle between the normal vector to the gesture plane
and the z-axis in the z-x plane. In other words, the rotation angle
between the gesture plane and the keyboard plane with the y-axis.
3. beta β : the angle between the normal vector to the gesture plane and
the z-axis in the z-y plane. In other words, the rotation angle between
the gesture plane and the keyboard plane with the x-axis.

Our paper presents a novel contribution by introducing metrics aimed
at quantifying the alignment between the virtual keyboard plane and
the virtual gesturing plane. From a geometrical standpoint, the relative
position of one plane to another can be adequately described by the
distance and rotational angles (denoted by lowercase Greek letters,
theta θ , and beta β ). Figure 4 shows box plots of these three metrics for
the six participants in the initial data collection. We observe individual
differences in the gesture plane. Most people tend to gesture in front
of the rendered keyboard plane, as indicated in Figure 4a. Figure 4b
and 4c show that users are better at aligning their gesture plane and the
rendered keyboard with the x-axis than the y-axis.

Challenge 3: Lack of Data

A gesture keyboard is subject to various sources of noise and ambiguity.
For example, different words may have spatially similar trajectories.
Cognitive and motor errors may also manifest as misspellings, char-
acter insertions, deletions or substitutions. When gesture typing in
AR, trajectories can be erratic and inconsistent due to the large oper-
ational space and the lack of tactile feedback. Deep learning offers a
potential method for decoding these noisy and ambiguous trajectories
into text but would typically demand a large annotated corpus of data.
Ideally every token in the supported lexicon is represented to achieve
a high level of robustness. However, a key requirement for training a
deep-learning-based gesture keyboard recognition model is access to
numerous representative user trajectories. The collection and annota-
tion of such a dataset is time-consuming and prohibitively expensive.
Further, due to the limited adoption of AR headsets such data cannot
be easily collected by, for example, crowdsourcing.
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Fig. 5: Illustration of the head and tail of the gesture trace for the word
‘sweet’. Blue dots comprise the core of the trajectory in the keyboard
plane while the red dots show the head and tail. The z-axis is normal to
the keyboard plane

4 MID-AIR GESTURE KEYBOARD FOR AR
In this section, we firstly reveal in detail of the 3D gesture keyboard
design we proposed and discuss the different between it with a conven-
tional 2D gesture keyboard design from Microsoft HoloLens 2 system
keyboard. Then we present the decoding architecture which translates
3D gesture trajectories into text.

4.1 User Interface
The 3D mid-air gesture keyboard was developed for deployment on the
Microsoft HoloLens 2, a commercially available AR headset, and lever-
ages the integrated hand tracking available on-device. Word gestures
are performed by moving the tip of the index finger over the keyboard
layout. To start a new gesture the user moves their finger towards the
keyboard plane and the gesture is completed by retracting the finger.
This start and end delimitation is governed by a distance threshold such
that individual word gestures are roughly segmented. The segmented
3D trajectories of the fingertip provide the raw observation sequences
to the system’s decoder that translates these 3D trajectories into the
user’s intended text. The output of the decoder is a ranked list of word
hypotheses. The top result is automatically inserted into the input
field and the next most likely hypotheses are presented as selectable
alternatives displayed in the keyboard interface. The implementation
allows for easy configuration of the visual features presented to the
user. Figure 3 shows the appearance of the gesture keyboard as viewed
through the Microsoft HoloLens 2.

4.2 Gesture Decoding Architecture
We now present the decoding architecture which translates 3D gesture
trajectories into text. Section 4.2.1 introduces the neural motion model
which serves as the gesture recognition model. It maps the input,
consisting of the 3D coordinates of the gesture trajectory concatenated
with additional crafted features (detailed in subsection 4.2.3), to a
sequence of vectors containing normalized probabilities for the set of
26 English characters (plus one additional ‘blank’ pseudo-character
indicating no output). Finally, subsection 4.2.2 describes the data
augmentation approach used to generate the synthetic gesture traces
in order to increase the amount of training data available to the neural
motion model.

4.2.1 Neural Motion Model
We propose a neural motion model we call Attention-Enhanced Bi-
directional-LSTM with CTC loss (AE-BLSTM-CTC) to overcome the
challenges facing a mid-air gesture keyboard for AR. This network’s
structure is illustrated in Figure 6. The key component in the AE-
BLSTM-CTC is the attention mechanism. An attention mechanism is
an important aspect in sequence to sequence (seq2seq) problems [14,
35].

The attention mechanism is used to focus on certain parts of the
trajectories and thus it can learn to ignore the heads and tails we previ-
ously identified in the 3D gesture trajectories. In addition, it can learn
from both spatial and temporal correlations. It also allows the recog-
nizer to learn positional dependencies and to focus on local or global
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Fig. 7: Attention map for gesture of the word ‘agreements’. This is the
heat map of the attention weight at different input locations with respect
to the target output. It shows where in the output word the model is
concentrating its attention throughout the gesture’s input sequence.

features. Therefore, we expect the attention mechanism to better tackle
the different challenges encountered with a mid-air gesture keyboard,
such as the heads and tails, the high levels of articulation noise and the
ambiguities in user input. We produce Figure 7 by taking the attention
weights of the trajectory input from the AE-BLSTM-CTC. An attention
weight is a probability of how strongly the model should attend to relate
the sequential position of the input sequence to the output sequence.
A greater attention weight means that there is strong attention from
the model between the positional information of the input and output
sequence. Such attention is learned from the training data. We can
observe that the model can estimate accurately where the attention
should be along the input sequence.

Gesture recognition has similarities to handwriting recognition and
thus it is unsurprising that a connectionist temporal classification (CTC)-
based model from that problem domain can be used to decode gestural
trajectories on mobile gesture keyboards [14]. We leverage the AE-
BLSTM-CTC model as the spatial neural model to map the input to
logits, a sequence of vectors of raw (non-normalized) predictions of
the input sequence. This input sequence is then passed into a softmax
function to generate a sequence of vectors of normalized probabilities
with one value for each possible class of the 26 English characters and
an extra class for blank. The blank class is used to encode duplicate
characters. This sequence is of the same length to the input. The output
from the softmax function is then decoded to text.

4.2.2 Data Augmentation
Shen et al. [33] proposed the Imaginative-GAN (Generative Adversarial
Network) as a model for generating synthetic hand gesture skeleton
data to improve hand gesture recognition models. Shen et al. [34]
subsequently leveraged this GAN model, along with other models, to
synthesize gestural trajectories for different scenarios, such as deep
neural network training and design optimization. However, they did
not implement the methods into actual decoders and they also did not
release their dataset. We extend this prior work by fine-tuning the
approaches and developing actual functional decoders. To be more
specific, we utilized the GAN-Imitation model from Shen et al. [34]
given its suitability for deep-learning training and the fact that the latent
attributes extracted from GAN models were found to be the closest
matches to real data. We use this model to synthesis trajectories for data
augmentation to improve training accuracy of the keyboard recognition
model.

4.2.3 Feature Vector
We further augment the input to the model by extracting additional
features. The feature vector contains six low-level geometric metrics
(curvature, aspect, curliness, linearity, slope, and offset) used by Shen
et al. [34] for characterizing gestural trajectories. The feature vector
also contains key activations following a similar approach to Alsharif
et al. [2]. This is a 26×1 boolean vector such that there is one element
for each key in the layout, and element i = 1 if the (x,y) coordinate falls
within the corresponding key boundary.

5 EVALUATION

We evaluate the mid-air gesture keyboard in three studies. These studies
assess the effectiveness of the gesture decoding architecture introduced
in Section 4. Note that the focus of this paper is examining the interface
features that influence a user’s tendency towards either open-loop or
closed-loop interaction when gesture typing. Comparing the perfor-
mance of our keyboard against alternative input methods, such as touch
typing or speech [1], is relevant future work but beyond the scope of
the current investigation. Study 1 is a parameter analysis that examines
the sensitivity of different design parameters in the decoder. Study 2 is
a series of user studies (Study 2a–2c) that investigate the performance
of the decoder with real users in a real-time setting and simultaneously
allows us to examine the entry rates that are achievable. As an ad-
ditional objective, Study 2 also investigates whether it is possible to
turn of visual feedback and maintain performance. Finally, Study 3
is a pair of user studies (Study 3a and 3b) that investigates the user
performance differential obtained by using 3D trajectory decoding for
mid-air gesture typing instead of the state-of-the-art 2D approach.

We report the results of the studies using the following metrics:

• Words Per Minute (WPM) indicates the number of words a person
can type within a minute.

• Character Error Rate (CER) is the minimum number of character
insertion, deletion, and substitution operations that transform the
response text into the stimulus text, divided by the length of the
stimulus text.

• Uncorrected CER and Corrected CER represent the CER in the pre-
dicted text output before and after applying any corrections, respec-
tively. The corrections include selecting word alternatives, deleting
words and re-entering (see Figure 3).

• Word Error Rate (WER) is the number of errors at the word level
divided by the total number of words in the stimulus text. Both CER
and WER are reported as percentages.

5.1 Study 1: Parameter Analysis
We here present an analysis of the decoder’s sensitivity to variation of
the main training and design parameters including the data augmenta-
tion method, the feature extractor and the neural motion model. Such
an analysis offers insights into the different components of the system
and how they impact performance [22, 24].
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model trained from 2000 real trajectories. ‘GAN 4000’ represents a
GAN-Imitation model trained from 4000 real trajectories.

Table 1: Recognition results of the neural motion model trained from
synthetic data generated from different data augmentation models.

Data Augmentation Method CER WER
GAN [30] 8.19% 27.91%
Jerk-Minimization [2] 40.12% 72.43%
GAN-Imitation (Ours) 5.41% 18.99%

Unless otherwise noted, we use a random 5% of the entire dataset
as the test dataset, another random 5% as the validation dataset, and
the rest as the training dataset. A validation dataset is used to give an
estimate of model performance in evaluation. The performance results
are reported from test data.

5.1.1 Data Augmentation
The trajectories synthesized from the GAN-Imitation model not only
reflect the spatial correlations (positional information) but also the
temporal correlations (speed profiles). Different variants of the synthe-
sized trajectories can be produced by setting different random seeds.
Therefore, one real trajectory can theoretically produce infinitely many
different variants with slightly altered spatial and temporal information.
We evaluated the following two parameters controlling the amount of
data used to both train the GAN-Imitation model and the amount of
data generated by the GAN-Imitation model to train the decoder model:

1. The number of real trajectories used to train the GAN-Imitation
model.

2. The number of trajectories synthesized from the GAN-Imitation
model to train the decoder model.

Note that we have an upper limit of 10,253 real trajectories from
the dataset collection described in Section 3 for training the GAN-
Imitation model. Figure 8 shows the impact of varying these two values
on decoder performance. We observe that the more data the recognition
model and the GAN-Imitation model are trained on, the better the
recognition performance. For subsequent parameter analysis, and in
the deployed system itself, we use 8,000 real trajectories to train the
GAN-Imitation and 64,000 generated trajectories to train the decoder
model.

To assess the benefit brought by using the GAN-Imitation method
over alternative data augmentation methods, we introduce two alter-
native methods for comparison: a GAN model proposed by Mehra et
al. [30]; and a Jerk-Minimization model from Alsharif et al. [2]. Table
1 shows that GAN-Imitation outperforms the other two approaches.

5.1.2 Feature Extractor
Next we evaluate the contribution of the different features in the feature
extractor. Section 4.2.3 introduced the different features that make up
the input vector. These are the coordinates of the trajectory, the key
activations and a collection of low-level geometry features (curvature,

Table 2: Recognition accuracy of alternative decoder models.

Recognition Model CER
SHARK2 [26] 35.34%
BLSTM-CTC [2] 6.53%
Joint Transformer/RNN 6.10%
Speech-Transformer 23.23%
LAS 26.43%
RNNT 26.53%
AE-BLSTM-CTC (Ours) 5.41%

aspect, curliness, linearity, slope, and offset). Using only coordinates
result in 13.6% CER while introducing key activations reduces the
CER to 7.3%. Adding geometry features reduces CER further to
5.4% demonstrating that having all features provide a clear benefit to
recognition performance.

5.1.3 Neural Motion Model
We compared the performance of our neural motion model against
a range of different models including those from Biju et al. [4] and
Alsharif et al. [2], which are Joint Transformer/RNN and LSTM-CTC
respectively. We further leveraged different state-of-the-art models,
including Speech-Transformer [8], Listen, attend, spell (LAS) [6] and
Recurrent Neural Network-Transducer (RNN-T) [13] from Automatic
Speech Recognition (ASR) as the goal of ASR is also a sequence
decoding problem. Although handwriting recognition also serves the
same purpose, there are very few advanced deep learning-based models
in the literature. We also used SHARK2 [26] as another baseline by
projecting the 3-dimensional trajectory to the keyboard plane and using
the projected trajectory as the input to the SHARK2 decoder.

Note that the training/test/validation dataset split, the data augmenta-
tion method, and the feature extractor all remained the same throughout
the experiments. Only the models were varied.

Table 2 shows that the attention mechanism in our model helps to
improve the BLSTM-CTC model by 1.12% and no models leveraged
from ASR perform well. The improved character error rate achieved
by our neural motion model, compared to BLSTM-CTC which shares
a similar backbone structure but lacks the attention mechanism, high-
lights the proficiency of our model in recognizing the heads and tails of
the input sequence. Additionally, Figure 7 provides further evidence of
the attention mechanism’s effectiveness in disregarding the heads and
tails of the input sequence. The model concentrates on establishing a
strong correlation between the gesture trajectory and the corresponding
character position in the output.

5.2 Study 2: User Performance with and without Visual
Feedback

Study 2 consists of three investigations, which we will call Study 2a,
2b and 2c.

5.2.1 Study 2a: User Performance
Study 2a has two objectives. The first objective is to evaluate the mid-
air AR keyboard’s text entry performance in a user study. The second
objective is to examine if it is indeed possible to turn off the cursor
indicating the tracked finger position and the gesture trace and still
maintain the same performance. Study 2a was structured as follows:

1. Participants: We recruited 18 participants using opportunity-
sampling from our university campus. 14 were male and 4 were female
and the average age was 22.8 (s.d. 2.7).
2. Materials: We used stimulus phrases from the no-number phrases
subset of the Enron mobile message dataset [17]. The phrases subset
were filtered to those with 40 or fewer characters, 4 words or more,
in line with prior research. [11]. We produced two stimulus phrase
sets consisting of 40 phrases each, and the order of the stimulus phrase
sets for the two blocks was counter-balanced. Also, in line with prior
research (e.g. [11]) we controlled the perplexity of the two phrase sets,
which essentially means that on average both phrase sets were roughly



Table 3: Entry and error rate descriptive statistics for Study 2a (mean ± SD [min, max]).

Block Entry Rate (WPM) Uncorrected Character Error Rate Corrected Character Error Rate
With Visual Feedback 18.36 ± 4.10 [12.66, 25.65] 6.18 ± 1.83 [2.83, 9.39] 0.88 ± 0.88 [0, 3.26]
Without Visual Feedback 21.39 ± 6.15 [13.17, 32.65] 6.16 ± 2.10 [1.71, 9.58] 0.62 ± 0.64 [0, 2.36]
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Fig. 9: Box plots of entry rate (WPM) over phrase subsets 0-10, 10-20,
20-30 and 30-40 in Study 2a. The green triangles show the group mean.

equally difficult to predict for the system. The stimulus phrases were
sampled randomly and filtered to ensure there were no duplicate phrases.
Finally, the two phrase sets contained different phrases compared to the
phrases used to train the decoder. There were in addition eight unique
words in the two phrase sets that were not included in the data used to
train the decoder. This is to test if the decoder is capable of generalizing
to unobserved words. We used a language model combined with an
auto-correction module of vocabulary size over 50,000 [37]. We used
a Microsoft HoloLens 2 as the AR headset and decoded the trajectory
data from the Microsoft HoloLens 2 on a dedicated PC. The connection
was wireless using Wi-Fi.
3. Protocol: The user study had two blocks. In the first block partici-
pants wrote with visual feedback turned on, which means the tracking
cursor and a gesture trace was present. In the second block participants
wrote with this visual feedback turned off. Note that the order of these
two blocks was not counter-balanced. This is because this visual feed-
back is necessary at the time of initial exposure for users to understand
how the system works. However, we hypothesize that after some initial
exposure, the visual feedback can be turned off without any detrimental
effect to performance. At the start of each block, participants were
asked to gesture fifteen practice phrases that were not included in any of
the two stimulus phrase sets. Participant were encouraged to ask ques-
tions and make sure they understood the interaction mechanism and the
keyboard functionality during practice. Having completed the practice
stage, participants were asked to enter stimulus phrases as quickly and
as accurately as possible. In addition, they were asked to slow down if
theirs error rate was consistently above 10%. The keyboard displayed
entry rate (WPM) and character error rate (CER) for each phrase to
participants. Stimulus phrases were sampled randomly from the current
phrase set. At the completion of the study, participants were asked to
comment on their experience of using the keyboard with or without the
visual feedback.

5.2.2 Results
We calculate entry rate based on the measured entry time from the first
‘lift on’ movement for the first character until the last ‘lift off’ move-
ment for the last character in the sentence. Table 3 shows the entry and
error rate for both blocks (with and without visual feedback). Partici-
pants achieved a mean entry rate of 18.4 WPM in the first block with
visual feedback and 21.4 WPM in the second block without visual feed-
back. We do not argue that this represents a significant improvement in
performance and we avoid running a statistical analysis because these
two blocks were performed in sequence and were not counterbalanced.
Rather, we report these values to illustrate that the decoder does indeed
support participants in maintaining their entry rates when the visual

Rep
eti

tio
n 1

Rep
eti

tio
n 2

Rep
eti

tio
n 3

25

30

35

40

45

W
PM

Rep
eti

tio
n 1

Rep
eti

tio
n 2

Rep
eti

tio
n 3

3

4

5

6

CE
R 

(%
)

Fig. 10: Box plots of the participants’ mean entry and character error
rates over the three repetitions of the 40 phrases in Study 2b. The green
triangles show the group mean.

feedback is removed.
Figure 9 shows box plots of the participants’ entry rates for four sub-

blocks with 10 phrases each in both the with and with visual feedback
blocks. Figure 9 shows that participants were quickly able to reach a
reasonable entry rate and maintain this rate across the sub-blocks and
across both blocks. This indicates that the immediate usability of the
gesture keyboard is high, which is encouraging considering that users
would both have to learn to interact with an AR headset and interact
with a novel refinement of a gesture keyboard in the user study.

In general, the results show that users can use the gesture keyboard
to enter words at an average rate of 20 WPM with a corrected error rate
of less than 1%.

5.2.3 Study 2b: Extended Practice

Study 2b has a single objective: examine what performance we may
observe from the fastest participants in Study 2a if they are provided an
opportunity to further practice. We invited the ten fastest participants
from Study 2a based on entry rate to return to participate in this study.
Eight participants were willing to return for both this study as well as
the later Study 2c.

We asked the participants to enter 40 phrases from one of the phrase
sets in Study 2a. This process was repeated three times. Visual feedback
was turned off and participants were instructed to not try to correct
their errors or select any word alternatives. This allows us to study
the performance of the AR gesture keyboard at an operating point
where a more experienced user is entering text at a rapid pace with less
regard to accuracy. Example use-cases include brief replies to emails
or messages, or in-game communication.

Figure 10 shows the entry rate and uncorrected character error rate
as a function of repetition of the phrase set. As expected, entry rates
increased across repetitions while the uncorrected character error rate
slightly increased. The mean entry rate and uncorrected character error
rate of the final repetition was 35.70 WPM and 5.52% respectively.
As a calibration point, in a large comparative study of commercial
state-of-the-art touchscreen keyboards and gesture keyboards, Reyal et
al. [31] found that the gesture keyboard resulted in an average entry rate
of 30.6 WPM with a corrected character error rate of 2.0% in the final
lab session. Overall, these results show that the AR gesture keyboard,
and in particular its decoder, is capable of supporting entry rate and
error rates roughly comparable to what is obtainable by a commercial
touchscreen gesture keyboard.



5.2.4 Study 2c: Accelerated Learning
Study 2c has a single objective as well: observe the human performance
potential of the fastest participants from Study 2a.

Study 2c involved the same participants as in Study 2b. Study 2b
and Study 2c were spaced at least four hours apart for each participant.

To assess the performance potential we applied an accelerated learn-
ing protocol, which used in the original large vocabulary gesture key-
board research paper [26]. The idea is to simulate expert performance
by saturating motor learning. This can be achieved by repeating individ-
ual phrases until they are consolidated in motor memory. Participants
are instructed to write a single phrase as quickly as possible. Partici-
pants are further instructed to not attempt any form of error correction.
Each phrase is repeated 40 times followed by a 5-minute break.

The four phrases were: A) ‘not at this time’, B) ‘i was planning to
attend’, C) ‘i will probably page you’, and D) ‘need before board meet-
ing’. The four phrases were randomly selected and cover a spectrum of
perplexity.

The mean entry rate is 41.3 WPM while the mean uncorrected error
rate is similar to Study 2b at 5.25%. Moreover, we also observed that
participant 4 achieved an entry rate of 71 WPM on Phrase B and six of
the eight participants achieved peak entry rates surpassing 50 WPM. We
believe these estimates indicate the upper performance bound of what
can be realistically achieved by this AR keyboard for well-rehearsed
phrases [26].

5.3 Study 3: Performance Differential Between a 2D and
3D Gesture Keyboard Design

Study 3 consists of two investigations, which we will call Study 3a
and 3b. Having teased out that a 3D trajectory-based decoding design
can result in substantial entry rates, we want to understand if there
is any subtle performance differential between a conventional gesture
keyboard design for AR headsets compared to this new design when
both designs use our new decoder.

Our testing and inspection of the Microsoft HoloLens 2 system
keyboard as part of this project revealed that the system keyboard
struggles to reliably detect the user’s intent to trigger the gesture typing
mode - the keyboard has both discrete (one character at a time) typing
and gesture typing. There is also no exposed API for disabling the
discrete entry mode. Regrettably, this prevented us from pursuing
any comparative evaluations using the system keyboard as a baseline.
As a result, we have created a baseline referred to as the 2D gesture
keyboard design, which is derived from the Microsoft HoloLens 2
system keyboard. We made adaptations by eliminating the discrete
entry mode and its corresponding visual indicator.

The 2D gesture keyboard design differs from our 3D gesture key-
board design in two critical ways.

• Delimitation threshold: The ‘3D’ keyboard design incorporates a
delimitation threshold set at 5 cm, indicating that a gesture delimita-
tion event is triggered when the user’s fingertip reaches or surpasses
this distance. When a gesture delimitation event has activated, the
user is able to gesture type and the 3D trajectory decoder decodes the
trajectory that has been recorded within the delimitation period. In
the ‘2D’ keyboard design, it is 0 cm. Therefore, even a slight touch
outside the virtual keyboard plane triggers delimitation in the ‘2D’
gesture keyboard, leading to trajectories being falsely segmented into
smaller ones (behavior seen on the Microsoft HoloLens 2).

• Visual cursor: In the ‘3D’ keyboard design, the cursor follows the
fingertip in 3D space, providing the user with direct control over
the cursor. The cursor is also accompanied by a visual indication
of its recent 3D path. In the ‘2D’ keyboard design, the cursor is a
regular projection of the fingertip’s position onto the keyboard plane,
and it is accompanied by a visual indication of its recent 2D path
(visualization used on the Microsoft HoloLens 2).

Both designs have a cursor attached to the fingertip before delimita-
tion which adaptively changes its size to indicate the relative perpen-
dicular position between the fingertip and the virtual keyboard plane.
This design also follows the design in the Microsoft HoloLens 2 system
keyboard.
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Fig. 11: Box plots depicting mean, median and quartiles of the partic-
ipants’ performance including entry rates and corrected/uncorrected
character error rates for 40 phrases in Study 3a.

5.3.1 Study 3a: User Performance for a 2D and 3D Gesture
Keyboard Design

Study 3a compares these two designs. Both designs use the same
decoder that we have introduced in this paper. In other words, we
are not evaluating the efficacy of our decoder in Study 3a, we are
comparing the merits of a relaxed 3D gesture typing design compared
to a traditional rigid 2D gesture typing design.

Study 3a was structured as follows:

1. Participants: We recruited 16 participants using opportunity-
sampling from our university campus. 10 were male and 6 were female
and the average age was 23.4 (s.d. 3.2). None of the participants had
previously taken part in Study 2a–2c.
2. Materials: We use the same stimulus phrase sets and same physical
set up as in Study 2a.
3. Protocol: At the start of each design, participants were asked to
write fifteen practice phrases that were not included in any of the two
stimulus phrase sets. Participants were encouraged to ask questions
and make sure they understood the interaction mechanisms and the
keyboard functionality during practice. The order of the two designs
and the order of the two stimulus phrase sets were counter-balanced.
Having completed the practice stage, participants were asked to enter
stimulus phrases as quickly and as accurately as possible. In addition,
they were asked to slow down if their error rate was consistently above
10%. The keyboard displayed entry rate (WPM) and character error rate
(CER) for each phrase to participants. Stimulus phrases were sampled
randomly from the current phrase set. At the completion of the study,
participants were asked to comment on their experience of using the
2D keyboard and the 3D keyboard design.

5.3.2 Results
Figure 11 summarizes the performance of the two designs in terms of
entry rate, uncorrected character error rate and corrected character error
rate. Participants achieved a mean entry rate of 26.52 WPM with the 3D
design compared a mean entry rate of 23.45 WPM with the traditional
2D keyboard, which is a 13.1% relative improvement in entry rate. A
paired samples t-test shows that this difference is statistically significant
(t(15)=2.20, p=0.044). We have used scipy.stats (v1.9.0) from the
Python library and tested the assumptions for parametric test statistics.
The differences in uncorrected (t(15)=-1.01, p=0.33) and corrected
error rates (t(15)=-0.50, p=0.63) were small and not significant. In
summary, the 3D design results in a significantly higher entry rate while
maintaining a low error rate.

The qualitative feedback indicated an overall preference for the
3D design. Eight participants remarked that the relaxed delimitation
provided by the 3D design appears to have helped them in avoiding false
delimitation events when they accidentally gesture outside the keyboard
plane. For example, P3 commented that “When the word is long, I
easily gesture out of the keyboard plane without actually noticing it, this
leads to the whole word being decoded into two separate words. This
sometimes is quite frustrating, so I need to slow myself down and pay
great attention.”. Nine participants also remarked that the 3D design



Table 4: Entry and error rate descriptive statistics for Study 3b (mean ± SD [min, max]).

Block Entry Rate (WPM) Uncorrected Character Error Rate
2D 32.12 ± 8.61 [12.80, 50.18] 1.73 ± 3.00 [0, 16.73]
3D 34.90 ± 10.01 [20.12, 68.24] 1.43 ± 2.00 [0, 11.63]

provides them with more control of the cursor. Three participants did
not express a strong preference for either design.

5.3.3 Study 3b: Accelerated Learning in a 2D and 3D Gesture
Keyboard Design

Study 3a revealed that the 3D design resulted in significantly higher
entry rates. The purpose of Study 3b is to investigate whether this entry
rate difference is maintained under an accelerated learning protocol
where participants are asked to repeatedly write a small number of
phrases in order to achieve motor memory consolidation.

Study 3b was carried out with the same participants as Study 3a and
followed the same accelerated learning protocol we used in Study 2c.
Study 3b compared the 2D and 3D designs and the order of the two
designs was counter-balanced.

Table 4 summarizes the entry rates and uncorrected error rates. The
3D design resulted in an approximately 8.7% higher entry rate (2.78
WPM difference). A paired samples t-test showed that this difference
was statistically significant (t(15) = 2.82, p = 0.00654). There was
no significant difference in uncorrected error rates (t(15) = −1.20,
p = 0.236).

6 DISCUSSION

We have presented a novel mid-air AR gesture keyboard decoder that
directly translates users’ 3D trajectories into text without relying on the
trajectories projected onto the 2D keyboard plane. With the 3D key-
board design and our novel decoder, users can write without touching
a virtual keyboard or articulating gestures within a precise plane. We
also conjecture that a mid-air gesture keyboard without a visual cursor,
combined with our decoder, would provide a user experience that is
less coupled to finger tracking lag and inaccuracies, allowing for a more
intuitive and natural interaction. This tendency towards open-loop in-
teraction can benefit expert users who can quickly articulate imprecise
word gesture trajectories directly from memory.

Study 1 used offline computational experiments to show that our
system can obtain an uncorrected CER of 3.95%. Study 2a demon-
strated that a sample of 16 participants could write at an average entry
rate at 21 WPM with a corrected CER of 0.6% without any visual
indication of the fingertip tracking cursor or any gesture trace on the
virtual keyboard. Study 2b showed that the eight faster participants
in Study 2a could with an hour of extended practice reach an entry
rate of 36 WPM with an uncorrected CER of 5.5%, which is roughly
equivalent to entry rates observed in the final session of a lab-based
study of a commercial touchscreen gesture keyboard [31]. Study 2c
used an accelerated learning protocol with the same participants as in
Study 2b and demonstrated that the human performance potential of
the mid-air gesture keyboard is in the region of 50–70 WPM with no
errors for well-rehearsed phrases. These studies validate the robustness
of the 3D trajectory-based decoder and demonstrate the potential of
providing a 3D design for gesture keyboard AR usage.

Note that we do not claim the removal of visual feedback induces
a higher entry rate or lower error rate. Since the blocks with and
without visual feedback were in a fixed order we cannot infer any causal
relationship between visual feedback and performance. Our claim is
instead slightly subtle but nonetheless highly relevant: after some initial
learning, users do not need such visual feedback to thrive using our
mid-air AR keyboard, thus providing users with a seamless blending
of physical reality—the user’s index finger—with virtual content—the
virtual keyboard plane.

The entry and error rates in Study 2a–2c indicate that this refinement
of the AR mid-air gesture keyboard is practical and supports novice
users reaching entry rates in a range between 18–21 WPM (Study 2a),
with the possibility of reaching around 35 WPM with further practice

(Study 2b). It is difficult to compare entry rates and error rates across
different studies since the participant pools, parameters, stimuli and
context are different [19]. However, Reyal et al. [31] carried out in-
depth evaluations of a commercial touchscreen gesture keyboard in
both a lab and on users’ own mobile devices during a two-week field
study. They found that users on average eventually reached entry rates
ranging between 28 to 39 WPM with a corrected CER ranging between
1–3.6%. Taking their results as an indication, it is plausible that a
long-term deployment of our AR mid-air keyboard would enable users
to almost reach a similar performance, despite the substantial technical
and behavioral challenges that arise when supporting mid-air gesture
keyboard interaction.

Finally, Study 3a and 3b teased out the differences between a tradi-
tional 2D AR gesture keyboard compared to the new 3D design when
both designs benefit from the new improved decoder. Study 3a found
that the new 3D design resulted in a significant 13.1% relative improve-
ment in entry rate and Study 3b found that an accelerated learning
protocol comparison again yielded an 8.7% relative improvement. In
both Study 3a and 3b there was no significant difference in error rate.

The robustness of our decoder enables accurate and reliable de-
coding of erratic and noisy trajectories, increasing the versatility and
potential use cases of mid-air keyboards. The decoder’s potential ap-
plications span various fields such as enabling hands-free text entry
in VR, and video see-through augmented reality (VST AR). Kern et
al. [16] conducted a comparison made between virtual reality (VR)
and video see-through augmented reality (VST AR) in terms of tap
and gesture/swipe keyboards. They discovered a significant increase in
participants’ swipe speed in VR compared to VST AR, and attributed
this discrepancy to the visual incongruence experienced in VST AR.
However, considering the novel decoding approach presented in this
paper, it is conceivable that it could alleviate the variations in text input
speed observed between VR and VST AR. In summary, the mid-air AR
gesture keyboard decoder is a novel approach that offers improved user
experience and versatile practical applications.

7 FUTURE WORK

We see several avenues of interesting future work. First, it would be
fruitful to further study the full performance potential of our refinement
of the mid-air AR keyboard and the effects of several parameters, such
as the presence of various degrees of visual feedback and different inter-
action contexts (such as users walking or situated in outdoor areas with
considerable background noise). Second, we believe a further refine-
ment of the mid-air AR gesture keyboard is theoretically possible that
would allow users to gesture entire sentences without hitting a spacebar
or otherwise delimit different words in an interaction style reminis-
cent of “dwell-free eye-typing” [25] (which was later implemented
as a working commercial product [23]). Realizing such a system for
a mid-air AR keyboard would be a considerable technical challenge,
however, we conjecture such a system would allow for a considerable
performance improvement. Third, beyond text entry, another challenge
is text editing [15,20], which opens up a large and relatively unexplored
design space in mid-air text entry.

8 CONCLUSIONS

In this paper, we have presented a mid-air gesture keyboard for head-
mounted augmented reality that supports users in articulating word
patterns by merely moving their own physical index finger in relation
to a virtual keyboard plane without any feedback of the tracked finger
position. To realize this refinement of mid-air gesture keyboards it
was necessary to tackle three problems: 1) the delimitation problem of
identifying when users perform a gesture; 2) the alignment problem of
inferring the plane in which the gesture performs their gesture; and 3)



the lack of representative data to train a deep neural network model. We
addressed these challenges by introducing a novel decoding method for
translating three-dimensional fingertip gestural trajectories into users’
intended text which was further assisted by data augmentation.

Overall, this work has demonstrated that the original large vocabu-
lary gesture keyboard design [26] can be successfully transplanted from
tablets and mobile phones to AR headsets using a new approach based
on 3D trajectory decoding and a design that takes into account the
unique challenges posed by AR mid-air interaction. We hope this work
will inspire further work in this area, including supporting a rich set
of text editing operations and studying 3D trajectory decoding gesture
keyboards in a variety of different settings.

OPEN SCIENCE

Complete source code for the neural motion model can be found
here: https://github.com/CambridgeIIS/mid_air_gesture_
keyboard_decoder.

REFERENCES

[1] J. Adhikary and K. Vertanen. Text entry in virtual environments using
speech and a midair keyboard. IEEE Transactions on Visualization and
Computer Graphics, 27(5):2648–2658, 2021. doi: 10.1109/TVCG.2021.
3067776

[2] O. Alsharif, T. Ouyang, F. Beaufays, S. Zhai, T. Breuel, and J. Schalkwyk.
Long short term memory neural network for keyboard gesture decoding.
pp. 2076–2080, 04 2015.

[3] X. Bi, C. Chelba, T. Ouyang, K. Partridge, and S. Zhai. Bimanual gesture
keyboard. In Proceedings of the 25th Annual ACM Symposium on User
Interface Software and Technology, UIST ’12, p. 137–146. Association for
Computing Machinery, New York, NY, USA, 2012. doi: 10.1145/2380116
.2380136

[4] E. Biju, A. Sriram, M. M. Khapra, and P. Kumar. Joint transformer/RNN
architecture for gesture typing in indic languages. In Proceedings of the
28th International Conference on Computational Linguistics, pp. 999–
1010. International Committee on Computational Linguistics, Barcelona,
Spain (Online), Dec. 2020. doi: 10.18653/v1/2020.coling-main.87

[5] S. J. Castellucci and I. MacKenzie. Gathering text entry metrics on android
devices. In CHI EA ’11, 2011.

[6] W. Chan, N. Jaitly, Q. Le, and O. Vinyals. Listen, attend and spell: A
neural network for large vocabulary conversational speech recognition.
In 2016 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 4960–4964. IEEE, 2016.
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[24] P. O. Kristensson and T. Müllners. Design and analysis of intelligent text
entry systems with function structure models and envelope analysis. In
Proceedings of the 2021 CHI Conference on Human Factors in Computing
Systems, pp. 1–12, 2021.

[25] P. O. Kristensson and K. Vertanen. The potential of dwell-free eye-typing
for fast assistive gaze communication. In Proceedings of the symposium
on eye tracking research and applications, pp. 241–244, 2012.

[26] P. O. Kristensson and S. Zhai. SHARK2:a large vocabulary shorthand
writing system for pen-based computers. Proceedings of the 17th Annual
ACM Symposium on User Interface Software and Technology, 01 2004.

[27] L. A. Leiva, S. Kim, W. Cui, X. Bi, and A. Oulasvirta. How We Swipe: A
Large-Scale Shape-Writing Dataset and Empirical Findings. Association
for Computing Machinery, New York, NY, USA, 2021.

[28] I. S. MacKenzie and R. W. Soukoreff. Phrase sets for evaluating text
entry techniques. In CHI ’03 Extended Abstracts on Human Factors in
Computing Systems, CHI EA ’03, p. 754–755. Association for Computing
Machinery, New York, NY, USA, 2003.

[29] A. Markussen, M. R. Jakobsen, and K. Hornbæk. Vulture: a mid-air
word-gesture keyboard. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, pp. 1073–1082, 2014.

[30] A. Mehra, J. R. Bellegarda, O. Bapat, P. Lal, and X. Wang. Leveraging
gans to improve continuous path keyboard input models. In ICASSP 2020-
2020 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 8174–8178. IEEE, 2020.

[31] S. Reyal, S. Zhai, and P. O. Kristensson. Performance and user experience
of touchscreen and gesture keyboards in a lab setting and in the wild. In
Proceedings of the 33rd Annual ACM Conference on Human Factors in
Computing Systems, pp. 679–688, 2015.

[32] M. Richardson, M. Durasoff, and R. Wang. Decoding Surface Touch
Typing from Hand-Tracking, p. 686–696. Association for Computing
Machinery, New York, NY, USA, 2020.

[33] J. Shen, J. Dudley, and P. O. Kristensson. The imaginative generative
adversarial network: Automatic data augmentation for dynamic skeleton-
based hand gesture and human action recognition. In 2021 16th IEEE
International Conference on Automatic Face and Gesture Recognition
(FG 2021), pp. 1–8. IEEE, 2021.

[34] J. Shen, J. Dudley, and P. O. Kristensson. Simulating realistic human
motion trajectories of mid-air gesture typing. In 2021 IEEE International
Symposium on Mixed and Augmented Reality (ISMAR), pp. 393–402. IEEE,
2021.



[35] J. Shen, J. Dudley, G. Mo, and P. O. Kristensson. Gesture spotter: A rapid
prototyping tool for key gesture spotting in virtual and augmented reality
applications. IEEE Transactions on Visualization and Computer Graphics,
28(11):3618–3628, 2022.

[36] J. Shen, J. Hu, J. J. Dudley, and P. O. Kristensson. Personalization of a
mid-air gesture keyboard using multi-objective bayesian optimization. In
2022 IEEE International Symposium on Mixed and Augmented Reality
(ISMAR), pp. 702–710. IEEE, 2022.

[37] K. Vertanen and P. O. Kristensson. Mining, analyzing, and modeling text
written on mobile devices. Natural Language Engineering, 27(1):1–33,
2021.

[38] W. Xu, H. Liang, A. He, and Z. Wang. Pointing and selection methods
for text entry in augmented reality head mounted displays. In 2019 IEEE
International Symposium on Mixed and Augmented Reality (ISMAR), pp.
279–288, 2019.

[39] X. Yi, C. Liang, H. Chen, J. Song, C. Yu, H. Li, and Y. Shi. From 2d to
3d: Facilitating single-finger mid-air typing on qwerty keyboards with
probabilistic touch modeling. Proceedings of the ACM on Interactive,
Mobile, Wearable and Ubiquitous Technologies, 7(1):1–25, 2023.

[40] C. Yu, Y. Gu, Z. Yang, X. Yi, H. Luo, and Y. Shi. Tap, dwell or gesture?
exploring head-based text entry techniques for hmds. In Proceedings of
the 2017 CHI Conference on Human Factors in Computing Systems, CHI
’17, p. 4479–4488. Association for Computing Machinery, New York, NY,
USA, 2017.

[41] C. Yu, Y. Gu, Z. Yang, X. Yi, H. Luo, and Y. Shi. Tap, Dwell or Gesture?
Exploring Head-Based Text Entry Techniques for HMDs, p. 4479–4488.
Association for Computing Machinery, New York, NY, USA, 2017.

[42] S. Zhai and P. Kristensson. The word-gesture keyboard: Reimagining
keyboard interaction. Communications of The ACM - CACM, 55, 09 2012.

[43] S. Zhai and P.-O. Kristensson. Shorthand writing on stylus keyboard. In
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’03, p. 97–104. Association for Computing Machinery, New
York, NY, USA, 2003.

[44] S. Zhai and P. O. Kristensson. The word-gesture keyboard: Reimagining
keyboard interaction. Commun. ACM, 55(9):91–101, Sept. 2012.

[45] S. Zhai, P. O. Kristensson, P. Gong, M. Greiner, S. A. Peng, L. M. Liu, and
A. Dunnigan. Shapewriter on the iphone: from the laboratory to the real
world. In CHI’09 Extended Abstracts on Human Factors in Computing
Systems, pp. 2667–2670. 2009.


