Simulating Realistic Human Motion Trajectories of Mid-Air Gesture Typing
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Figure 1: Example traces for the phrase, ‘I talked to Duran’. Trace start is shown by the blue ‘X’ and then the trace transitions
through green and finishes at the yellow ‘X’. a) Real trajectories. b) Trajectories synthesized from the Jerk-Minimization model.
¢) Trajectories synthesized from the Recurrent Neural Network (RNN)-based generative model. d) Trajectories synthesized from
the GAN-based generative model in the Transfer setting, where the style is transferred from the original trajectories to trajectories
that simply connect the key centers for the corresponding phrase. e) Trajectories synthesized from the GAN-based generative
model in the Imitation setting, where the style is transferred within the original dataset, such that different variants of original

trajectories are produced.

ABSTRACT

The eventual success of many AR and VR intelligent interactive
systems relies on the ability to collect user motion data at large scale.
Realistic simulation of human motion trajectories is a potential so-
lution to this problem. Simulated user motion data can facilitate
prototyping and speed up the design process. There are also potential
benefits in augmenting training data for deep learning-based AR/VR
applications to improve performance. However, the generation of
realistic motion data is nontrivial. In this paper, we examine the spe-
cific challenge of simulating index finger movement data to inform
mid-air gesture keyboard design. The mid-air gesture keyboard is
deployed on an optical see-through display that allows the user to
enter text by articulating word gesture patterns with their physical
index finger in the vicinity of a visualized keyboard layout. We pro-
pose and compare four different approaches to simulating this type
of motion data, including a Jerk-Minimization model, a Recurrent
Neural Network (RNN)-based generative model, and a Generative
Adversarial Network (GAN)-based model with two modes: style
transfer and data alteration. We also introduce a procedure for vali-
dating the quality of the generated trajectories in terms of realism
and diversity. The GAN-based model shows significant potential for
generating synthetic motion trajectories to facilitate design and deep
learning for advanced gesture keyboards deployed in AR and VR.

Index Terms: Human-centered computing—Human computer
interaction (HCI)—Interaction techniques—Text input;

1 INTRODUCTION

Human motion analysis and simulation is a popular research topic
in the Augmented Reality (AR) and Virtual Reality (VR) commu-
nity due to its varied potential applications, including: i) real-time
avatar animation and control [26}/36]; ii) smooth human-robot in-
teraction [3[]; iii) sports training and analysis [16]; and iv) data
augmentation in human skeleton-based deep neural network model
training [40]. In the design and development of these different appli-
cations, multiple experiments, or extensive data collection activities,
are usually required for either the validation of prototypes or the
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Figure 2: Illustration of a user gesturing on a mid-air gesture key-
board in AR, reproduced from Dudley et al. [12] (left), and illustra-
tion of a user’s gesture trajectory (right).

training of deep learning-based systems.

We start the investigation of human motion simulation by exam-
ining low dimensional data. In this paper, we specifically explore
the trajectory of an index fingertip articulating word patterns on a
mid-air gesture keyboard [23,25/44]. It is typically referred to as
“gesture typing” on Android and “QuickPath” on iOS. A user enter-
ing text on a mid-air gesture keyboard is illustrated in Figure[2] The
gesture keyboard was also recently introduced in the development
release for the Microsoft HoloLens 2 [34]).

Two important scenarios for gesture keyboard design invoke a
need for synthetic data. First, mid-air keyboard layout design op-
timization faces a challenging optimization problem in terms of
determining different keyboard parameters, such as keyboard size,
key size, the distance between keys, etc. These parameters can vary
greatly in mid-air. Despite the complicated optimization task, the
design process can lead to an optimized design balancing accuracy,
speed, and comfort. Mainstream parameter-optimization approaches
include random search, grid search, and Bayesian optimization. The
first two approaches require a large amount of data and Bayesian
optimization requires a tightly coupled responsive evaluation mech-
anism [111]19,20]. Considering the potentially enormous parameter
space to search for an optimized design strategy, extensive user ex-
periments are required. Computational simulation of human motion
data is one potential way to efficiently reduce the number of pro-
totypes required and thereby speeding up the design process while
reducing costs. It also has the potential to fully automate this design
process and revolutionize experimental-based decision-making [37].

Second, developing a neural network-based gesture keyboard
recognition model for a mid-air optical see-through AR gesture key-
board is a significant undertaking. Recognition of two-dimensional



Generation Model Accuracy Latent Space Condition on Arbitrary Condition on Arbitrary Optimization Time
Distance Keyboard Layout Phrases

Jerk-Minimization Y N Y Y NA*

RNN N N Y Y 6 hours

GAN-Transfer Y Y Y Y 20 minutes

GAN-Imitation Y Y N N 20 minutes

Table 1: The characteristics of the four proposed trajectory generative models assessed in terms of different aspects and suitability for different
tasks. For example, being able to adapt to a new keyboard layout and new phrases is desirable for a synthesizer when automating keyboard
design. Showing a close distance in latent space suggests the potential to help data augmentation to train a machine learning based keyboard
recognition model. NA* indicates the requirement for human intervention to optimize the hyperparameters. Y indicates Yes and N indicates

No; for the Latent Space Distance, Y indicates Close and N indicates Far.

trajectories articulated on touchscreens (e.g. [[1,23}25]) is less chal-
lenging compared to trajectories articulated in mid-air due to the
lack of haptic feedback and inaccuracy of tracking sensors. Deep
learning-based mid-air gesture keyboard recognition models are a
potential approach to overcome this challenge [1|]. However, a key
requirement for training a deep neural network gesture keyboard
decoder model is access to very large volumes of data based on
representative user traces. Deep learning-based models require a
large amount of training data to generalize—otherwise there is a
high risk of over-fitting reducing performance. Unfortunately, an
abundance of such data is unavailable for such an AR headset setting
due to the limited adoption of such technology to date and the lack
of concerted public data collection activities. Collecting and anno-
tating such data requires extensive user data collection activities,
which are time-consuming, expensive and challenging. Moreover,
any data collected usually correspond to a single operating point (set
of keyboard parameters) and thus may not generalize well beyond
this setting. This significant bottleneck introduces an obstacle to
the long-term goal of building a robust gesture keyboard decoder
model and automating the design process for the envisaged mid-air
gesture keyboard. However, if the probability distribution of human
motion for this task can be accurately approximated, data can be
efficiently sampled from this approximated distribution and be used
as a surrogate for real samples. The data sampled from the approxi-
mated probability distribution can then be used to augment limited
training data. Shen et al. [40] used a GAN-based synthesis model to
sample synthetic skeleton hand gesture data from an approximated
distribution of real hand gestures, and demonstrated the advantage
and improvement brought by the synthetic data in data augmentation
in training a deep neural network recognition model to classify the
hand gestures.

However, generating realistic finger trajectories is challenging
and should satisfy: i) the nonlinear system dynamics; ii) the physical
limits of human hands, such as their maximum speed; and iii) the
position constraints that impose that the trajectory should pass near
the waypoints of the ideal gesture on the keyboard. To tackle the
above challenges, we propose and explore four data synthesis ap-
proaches that can generate four types of synthetic trajectories with
different properties:

1. Jerk-Minimization Model: This is a deterministic model and
is optimized by minimizing the high order derivatives along
the trajectories. It requires human intervention to fine-tune the
parameters of the model in order to generate realistic trajecto-
ries [33].

2. Recurrent Neural Network (RNN)-based Model: This is a
generative model based on a Recurrent Neural Network. We
used a mixed dataset of real data and the data generated from
the Jerk-Minimization model to stabilize the convergence of
the model, considering the model itself is hard to train [14].
We apply an important technical innovation (detailed in Sec-

tion[3.2) on the method used by Graves [[14] to facilitate train-
ing despite using only one tenth of the amount of data.

3. Generative Adversarial Network (GAN)-based Model: We
used a GAN structure similar to CycleGAN for an unpaired
trajectory-to-trajectory style transfer [45]]. The GAN-based
model has two settings: GAN-Imitation and GAN-Transfer.
GAN-Transfer transfers the styles of the real trajectories to
each other, producing trajectories with more variation. GAN-
Transfer transfers the style of real trajectories to synthetic
trajectories that are produced by simply connecting the key
centers together. The GAN-Imitation model is adapted from
Shen et al. [40] and modified to synthesize fingertip gesture
trajectories as opposed to hand gestures. The GAN-Transfer
model is a further novel modification which enables the syn-
thesis of new gesture trajectories for which there is no raw user
data.

The gesture traces generated by these methods are validated using
five micro metrics that characterize the finger motion data, a dimen-
sionality reduction algorithm for visualization of the latent space,
and finally, a simulated gesture keyboard recognizer for assessing
accuracy and noise levels. We summarize the properties of the four
different synthesizers in Table[T}

1. Micro Metrics: We use geometric micro metrics, including
curvature, aspect, vicinity curliness, linearity, and slope, to
characterize the low-level features of the trajectories [17]. In
addition, we calculate Kullback-Leibler (KL) divergence be-
tween the micro metrics per trajectory.

2. Accuracy: The trajectories should be recognized accurately
while maintaining a certain degree of error to mimic human
behavior.

3. Latent Space Distance: The distance of the data distributions
in latent space after dimensionality reduction. The distance re-
veals the similarity between latent attributes of both the tempo-
ral and spatial information, with a smaller distance indicating
a better data augmentation strategy for deep learning.

4. Condition on Keyboard Layout: The ability to generate new
trajectories conditioning on arbitrary keyboard layouts and
designs.

5. Condition on New Phrases: The ability to generate new tra-
jectories from any arbitrary phrase.

6. Optimization Time: The time to find an optimized strategy
to generate realistic data.

To inform and guide the development of a generative model, we
built a simulated mid-air gesture keyboard deployed on a Microsoft



HoloLens 1 optical see-through AR headset to collect real user
traces. This collected dataset serves two purposes. First, it helps
characterize user behavior and typical variation exhibited in mid-air
gesture typing in this setting. Second, it establishes a baseline for
validating the synthesized traces.

The potential of the four approaches to generate synthetic trajec-
tories is thoroughly illustrated by the evaluation of the micro metrics,
the latent space visualization, and accuracy. We note that each ap-
proach also has its strengths and weaknesses. Combining both the
consideration of the characteristics of the generated trajectories and
the properties of the generative model, we can find a model that suits
its purpose. For example, if one needs a data augmentation model, a
smaller distance in latent space is preferred, while consistency, in
terms of micro metrics and accuracy, is more important for keyboard
design.

In summary, our main contribution is the demonstration of four
data efficient models for synthesizing trajectories with different
properties suited for different design purposes. We also provide the
code and dataset to support the replication and extension of this
research

2 RELATED WORK

Various strategies have been used to simulate human motion includ-
ing kinematic and biological models [29], control models based on
energy minimization [39,[43|], and data-driven models leveraging
neural networks [[11[41/13]]. Data-driven models are attractive in in-
stances where the underlying motor control or biological behaviors
are difficult to articulate. The trajectories produced while gesture
typing fall into this category, although Quinn and Zhai [39] have
demonstrated the potential of Jerk-Minimization-based approxima-
tions. In this paper, we focus primarily on using neural networks
to synthesize motion trajectories and devote the majority of this
literature review to that topic. Alternative approaches are briefly
reviewed at the end of this section.

Deep neural network models trained on real human motion tra-
jectories can approximate the probability distribution of the training
data and sample new data from the approximated distribution. Al-
sharif et al. [[1]] proposed a hybrid approach combining an RNN
and a conventional Finite State Transducer to address some of the
challenges in 2D gesture typing on a touchscreen, such as elision,
co-articulation, and high variability. One of their trajectory datasets
used to train the network is generated by connecting the charac-
ters using a minimum jerk model, which is similar to the Jerk-
Minimization model we propose here. Akash et al. [32] proposed
a Generative Adversarial Network (GAN)-based model to gener-
ate continuous 2D trajectories that conform to user idiosyncrasies.
However, the number of real trajectories required to train the pro-
posed GAN-based model remains high (2.2 million) [32]. The key
difference between this GAN-based model and our proposed novel
GAN-Transfer setting is that: i) we do not require a large amount of
data to train the GAN compared to the work from Akash et al. [32]];
and ii) Akash et al. generate 2D trajectories for a word, whereas we
generate 2D trajectories for phrases which are considerably longer
than the word-based trajectories. The longer the sequence to be
generated, the more challenging the task is since the neural network
should process much longer temporal information. This necessitates
the use of teacher forcing in the Imaginative GAN [40] to handle
long temporal relationships. Handwriting synthesis, which is the
generation of handwriting for a given text, is another popular re-
search area for human motion simulation. This is similar to our
research problem in that the challenge is conditioning the predic-
tions on the text while the two sequences have very different lengths.
Further, another similar challenge is that the alignment between the
two sequences is unknown. One of the models which are able to
tackle this difference in sequence length and the unknown alignment
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issue is the RNN transducer [[13]]. Graves et al. [[14] proposed an
alternative model which contains a ‘soft window’ that is convolved
with the text string and used as an extra input to the generative
network.

The other direction of human motion simulation is a biologi-
cal model-based approach which incorporates muscle models and
other biological considerations. The diverse behaviors of human
locomotion can be generated with a complex neuromuscular gait
model [41]. Ignor et al. [35]] developed a lower-limb musculoskele-
tal model for animating human activities driven by the lower body.
Reinforcement learning, which uses an agent to optimize a reward
function, has had success in learning muscle activation and joint
torque patterns [[18}[27]]. Anand et al. [2] used a deep reinforcement
learning-based approach to learn the individual specific walking
behavior at various walking speeds by directly learning the muscle
activation pattern.

Kinematic theory related to rapid human movements [38|] was
leveraged by Leiva et al. [28] to produce synthesized stroke gestures
that hold the same statistical characteristics as human-generated
gestures. This was achieved by introducing local and global pertur-
bations to the model parameters. Perlin noise has also been used
as a perturbation model to produce realistic synthetic data for aug-
menting the training of a gesture recognizer [42]]. Classification
accuracy and statistical measures representing geometric, kinematic
and articulation aspects of traces have been used to measure the sim-
ilarity between the synthesized data and human-generated data [[29].
Leiva et al. [30]] identified a set of representative and useful features
describing stroke gestures which can be used in different scenarios,
such as when evaluating the quality of synthesized stroke gestures.

3 SYNTHESIZING GESTURE TRACES

Two types of synthetic data can be generated: 1) synthetic data
conditioned on other inputs; 2) synthetic data with its style altered.
Conditional synthetic data is a more desirable form of synthetic data
since it is generated conditioned on inputs, such as audio, sentences,
etc. The second type of synthetic data (style alteration) results in
variants of the trajectories. The trajectories will be of different styles
due to hand size, posture, movement speed, etc. but still possess the
original general shape.

In this paper, we will generate trajectories from two conditions.
First, the trajectories can be synthesized from arbitrary phrases.
Second, the trajectory generation model can be synthesized from ar-
bitrary new keyboard layouts. For this challenging task, the approach
entails transferring the styles of the real trajectories to trajectories
that are produced by a deterministic generation algorithm.

3.1 Jerk-Minimization Trajectory Generation

Originating from trajectory planning applications involving Un-
manned Aerial Vehicles (UAVs), and in particular quadrotors, we
used a Jerk-Minimization model to generate realistic index tip trajec-
tories [7]]. This model is similar to the data augmentation approach
employed in training a gesture typing recognition model used by
Alsharif et al. [1]]. Alsharif et al. [|[1] successfully demonstrated an
improvement in deep learning-based recognition model performance
using this approach. The trajectory is generated where high order
derivatives along the trajectory are minimized while satisfying way-
points (equality) and axis-parallel box constraints (inequality). The
high order derivatives refer to acceleration and jerk which is the
time rate of change of acceleration itself. By minimizing high-order
derivatives, we can effectively generate human-like trajectories pro-
vided by different constraints. We have taken several constraints and
costs into consideration including: i) the time to complete a phrase
on the gesture keyboard; ii) the distance between the waypoints (key
centers) and the trajectory; and iii) the energy consumption, which
is the length of the trajectory. The objective and constraints are
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formulated in quadratic programming. We use piecewise polyno-
mials to parameterize the trajectory. It defines the primitive of the
curve as a polynomial spline, and the optimization target is poly-
nomial coefficients. We implemented the model from Spedicato et
al. [33]] and included our aforementioned specific constraints and
costs. There are several hyperparameters, including the polynomial
order, the number of segments of polynomial, and the maximum
degree of continuity when joining two segments, that need to be
tuned for the purpose of making the generated trajectory as similar to
the real trajectory as possible. The similarity measure is calculated
from the Kullback—Leibler (KL) divergence of the micro metrics
describing the trajectories. We used Bayesian optimization to facili-
tate the tuning of the hyperparameters [5]. A Gaussian Process is
used as the surrogate model and a multi-objective acquisition ensem-
ble algorithm (MACE) as the acquisition function. The surrogate
model approximates the function of the jerk-minimization model
from historical interactions whilst providing uncertainty estimates
needed to guide exploration. The acquisition function acts as a proxy
to the true sequential risk, measuring the utility of gathering new
input points by trading off exploration and exploitation [|6]. After
the optimization, we manually check the samples to fine-tune the
hyperparameters.

3.2 RNN-Based Trajectory Generation

Handwriting synthesis is closely related to our research topic since it
is also based on generating trajectories conditioned on text. Graves
et al. [14] proposed a model consisting of three LSTM layers and a
predictive network for handwriting synthesis. LSTM units overcome
the inability of traditional RNNs to handle long-term dependencies
by including read and write gates that learn how to use and store
information in an artificial memory cell [[15]22]]. The LSTM unit
is composed of a cell, an input gate, an output gate, and a forget
gate and we use a standard structure [[15]]. The input to the model, X;
where ¢ is the time step, is the offset between each trajectory point.
The output describes a Mixture Gaussian model, which is the predic-
tive network that is used to predict the next input X;, which is also
offset to the next trajectory point. For the model to generate trajecto-
ries conditioned on text, it has a ‘soft window’ which is convolved
with a set of character vectors and fed in as an extra input to the
prediction network. Therefore, the model can generate trajectories
based on the text string convolved with the ‘soft window’.

Synthesizing fingertip trajectories of gestured words and phrases
is more challenging than synthesizing handwriting. For example,
gesture trajectories do not have a clear boundary between consec-
utive characters unlike in handwriting where each character has a
distinctive trajectory and is spatially separated. As a consequence,
only a gesture trajectory for a complete word is meaningful. Com-
plicating matters further is the fact that distinct words can have very
spatially similar gesture trajectories, such as ‘vampire’ and ‘value’.

These various ambiguities and lack of common patterns in the
trajectory data frustrate efforts to train a deep neural network with-
out an enormous amount of data. We therefore introduce a novel
modification to the typical training scheme. We encode the phrases
by one-hot encoding on a two-character horizon (bigram) to capture
key-to-key transitions. Each input vector ¢, at index u has a length of
n-729 (27x27 exhaustive bigram combinations of 26 letters and one
space key), where n is the number of characters in the corresponding
phrase. We use an attention mechanism that solves the alignment
problem by allowing the network to leverage all information held by
the original sequence. It then generates the proper sequence accord-
ing to the currently processed character given the previous character
and recent trajectory. To further mitigate the paucity of data, we
combine the synthetic trajectories from the Jerk-Minimization model
with the user trajectories to form mixed training data.

(b) After Transfer.

(a) Before Transfer.

Figure 3: Example traces in the Transfer setting for the phrase:
‘bad for the environment’. a) Simple trajectory connecting the key
centers. b) Trajectory after style transfer from real trajectories.

3.3 GAN-Based Trajectory Generation

A Generative Adversarial Network (GAN) trains a pair of networks
competing against each other: a generator attempts to generate as
real samples as possible while a discriminator attempts to distinguish
between the generated and real samples. We adopted the model from
Shen et al. [40], which proposed the ‘Imaginative GAN’ which is a
data-efficient model that can transfer styles between two datasets in
two domains, such as CycleGAN but in trajectory domains instead
of image domains [45]. Shen et al. used the Imaginative GAN
to augment the training data for hand gesture classification model,
which achieves great performance in the classification accuracy
and the time to find an optimized augmentation strategy is greatly
reduced. The Imaginative GAN introduced teacher forcing in the
generator, such that ground truth data is used instead of noise to be
the input to the generator. This efficiently reduces the amount of
data required to train a stable GAN and handles the long temporal
information of the data.

The goal of the Imaginative GAN is to transfer the latent attributes
between two domains. The latent attributes include behavioral at-
tributes such as posture, movement speed, and physical attributes,
such as hand size. While the Imaginative GAN generates synthetic
skeleton-based hand gesture data, the GAN-based synthesizer we
propose can generate synthetic trajectories. Based on the Imagina-
tive GAN, we developed two modes of operation for GAN-based
synthesizers: GAN-Imitation (GAN-I) and GAN-Transfer (GAN-T).

1. GAN-Imitation: The two inputs X and Y are the complete
set of real trajectories. Therefore, while performing stochastic
gradient descent on the model in mini-batches, styles can be
transferred within the dataset, resulting in more trajectories
with diverse attributes. The GAN-Imitation model is adapted
from the method introduced in Shen et al. [40] for synthesizing
hand gestures.

2. GAN-Transfer: The two inputs X and Y to the model are the
straight line segments connecting the key centers together and
the original trajectories, respectively. Therefore, the styles of
the original trajectories, such as the curliness, linearity, slope,
and curvature are transferred to the line segments, producing
realistic trajectories that adapt to new keyboard layouts and
new phrases. This approach is similar to the work from Akash
et al. [32] but requires substantially fewer real traces. Our GAN
is easy to train and does not require large amounts of data: a
few hundred traces is sufficient. This GAN-Transfer setting is
a novel extension of the Imaginative GAN [40]], enabling the
transfer of learned human behavioral features onto the purely
synthetic raw trajectories.



(a) Before Imitation. (b) After Imitation.

Figure 4: Example traces in the Imitation setting for the phrase: ‘bad
for the environment’. a) Real trajectory. b) Trajectory after being
altered by GAN-Imitation.
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Figure 5: a) Number of failed phrases as a function of tolerance
length for each participant. b) The trade-off between accuracy and
robustness for the four synthesization approaches compared to the
real trajectories, computed as the average of each type of trajectory.

4 EXPERIMENTS
4.1 User Trace Data Collection

To ensure we collected representative traces, we used a Wizard of
Oz approach [§]]. We built a simulated mid-air AR gesture key-
board model that simulates a ‘real’ recognition model and enables
the collection of representative user traces. The simulated function
evaluates whether the user’s fingertip passes within the tolerance
region of the intended character keys in sequence for a given stim-
ulus phrase. Such an approach has been used before to study the
feasibility of novel text entry methods that are difficult to implement
(e.g. [10,24]]). The Wizard of Oz approach requires that the system
has prior knowledge of the stimulus text but this is well-suited to a
typical text entry transcription task.

Motivated by the difficulty in clearly delimiting individual word
gestures, we introduced the requirement that users must explicitly
articulate the space between each word by tracing over the spacebar.
From the perspective of gesture synthesis, this means that the space-
bar just represents an additional key to be visited and influences the
form of gestures in the same way as any other key. This implemen-
tation contrasts with a typical gesture keyboard implementation on a
capacitive touchscreen where the ‘touch down / lift off” serves as a
clear indication of the start and end of a word gesture.

We used a Microsoft HoloLens 1 to display a virtual keyboard
and we used an OptiTrack motion capture system to collect accurate
finger traces. We collected gesture traces from 20 participants. The
average age of the participants was 24 with a standard deviation of
4 years. Among the participants, there were 13 male participants
and 7 female participants. 3 participants had experience with Aug-
mented Reality Head Mounted Display (HMD) while the rest did
not. Participants were given 20 minutes to familiarize themselves
with the AR HMD by gesturing test phrases. The stimulus phrases
were taken from the Enron [21]], and MacKenzie phrase sets [31]] and
each participant typed 51 randomly selected phrases. A total of 1020
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Figure 6: a) Example of the three dimensional raw trace data for the
phrase: ‘I talked to Duran’. b) Median and interquartile range for
depth (left) and planar error RMSE (right) for each participant.

unique phrases were entered with an average of 5.3 words per phrase.
The average length of the trajectory for each phrase was 607 samples
with a standard deviation of 244 samples when logged at a sample
rate of 100 Hz. Figure[6alillustrates one instance of a collected trace.
For data collection, the tolerance length of the simulated recognizer
was set to 50 mm on a keyboard with an apparent size of 180 X
76 mm. This tolerance length was determined in pilot testing as a
suitable value to encourage users to draw natural traces instead of
forcing them to sequentially travel to the center of each target key.

We transformed the coordinates of the keyboard displayed on the
HoloLens into a common frame with the OptiTrack’s tracking data,
allowing the tolerance-based simulated gesture recognizer to run
‘online’. No input feedback was provided to participants until the
trace of the set stimulus phrase was completed.

Figure [6b] captures a view of users’ perception of the virtual
keyboard. It plots the root mean square error (RMSE) between
the trajectory points and a plane fitted to those same points (right)
and the depth of that plane to the actual keyboard (left). This plot
highlights the fact that most people tend to gesture consistently
within a plane, albeit not necessarily within the virtual keyboard
plane. This finding is also reported by Khan et al. [9]. This suggests
it is possible to reduce the dimensionality by projecting the raw data
points onto a plane. This simpler representation allows a deep neural
network to be more efficiently trained.

4.2 Preprocessing

This section describes the preprocessing steps applied to the raw
data before training the generative models, as well as additional
processing of generated data before the evaluation of the micro
metrics. The main steps of the preprocessing include denoising,
interpolating, resampling and normalizing.

1. Denoising: We use a Savitzky—Golay filter to remove noise.
This is achieved by fitting successive subsets of adjacent data
points with a low degree polynomial using linear least squares.
The window length is set to 7 and the order of the polynomial
used to fit the data is set to 3.

2. Interpolation: Spline interpolation of zeroth order is used to
interpolate any missing points of the raw data.

3. Resampling: This step is only for processing the synthetic
trajectories, but not for preprocessing the training data of the
RNN- and GAN-based models as temporal information will be
lost after resampling, which is crucial information when train-
ing the generative models. The generated data is resampled
to ensure adjacent points are equidistant. Figure shows the
trajectory before and after equidistant resampling.

4. Normalizing: The data is divided by the Frobenius norm along
the temporal dimension. The goal of normalization is to ensure
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(a) Before resampling. (b) After resampling.

Figure 7: Trajectories before and after equidistant resampling.

the trajectories lie within a common bounding box. This pro-
motes speed and stability in training the deep neural networks.

4.3 Evaluation of Geometric Micro Metrics

To assess the ability of the synthesized trajectories to approximate
real user traces, we compare their low-level features by examining
a set of geometric micro metrics. These micro metrics are adapted
from Jaeger et al. [17]], who originally used them to characterize
handwriting trajectories. This assessment serves in part to determine
whether the generative models can replicate human-like features in
the trace.

The micro metrics are computed in a vicinity, as illustrated in
Figure A vicinity V(¢) is a bounding box which contains the
preceding and succeeding points of (x(¢),y(z)).

1. Curvature: The curvature of a point (x(z),y(¢)) is measured
by B in Figure It can be calculated as follows:

i = (x(t —3),y(t—3)) — (x(t),y(1))

V= ((x(t+3),5(t+3)) = (x(t),5(2)))

—

i-v
B = arccos ———
2| > 7]

2. Aspect: The aspect A(t) of a point (x(¢),y(z)) characterizes
the height-to-width ratio of V (¢), as shown in Figure[@ Itis
calculated as: A Ac

t)— t

Ay — 0~ Ao

Ay(1) + Ax(t)

where Ay(¢) and Ax(r) are respectively the height and width of
the vicinity.

3. Curliness: Curliness C(t) characterizes the deviation from a
straight line in the vicinity. It is calculated as:

(1)
€O = artarte) )

where [(¢) is the sum of lengths of all line segments in vicinity
V(t). Ax(r) and Ay(r) are the width and height of the vicinity
V(t).

4. Linearity: Linearity L() is measured as the average square
distance, with each distance defined to be d;, between the N
points in the vicinity V(¢) and the straight line joining the first
and last point in this vicinity. It is defined as follows:

1 2

5. Slope: The slope describes the angle o in degrees. It measures
the slope of the straight line joining the first and last point in
the vicinity V (¢) and is calculated as:

Ay(t)

o = arct.
arctan A7)

4.4 Implementation Details

We used a computer that has 3 x Nvidia GeForce RTX 3090 GPU,
1 x Ryzen 9 3970x CPU.

4.4.1 Jerk-Minimization Model

The polynomial order is 4. The maximally imposed continuity
between segments is 1. The weights for the first, second, and third-
order derivatives are 100, 4, 0, respectively. We used KL divergence
for the five proposed micro metrics for the loss metric, and the
number of maximum iteration is set to 50.

4.4.2 RNN-based Model

‘We adopted the same training scheme from Graves et al. [14]. We
trained the generative model using a dataset of 40,000 traces consist-
ing of 10% real user trajectories and 90% traces generated from the
Jerk-Minimization model.

4.4.3 GAN-based Model

We use the same training scheme from Zhu et al. [45]]. The training
batch size is 64. A1 and A, in the objective function for the generators
are set to 10 and 5, respectively. The number of hidden units for the
GRU cell in the generator is 512.

4.4.4 Procedure

We generated synthesized traces corresponding to the 1,020 phrases
used to collect the 1,020 real gesture trajectories. The vicinity size
is set to 7 points. The micro metrics are computed averaged across
all phrases. The KL divergence is computed for each phrase. In
Section [5] we present only a subset of phrases to improve visual
clarity. We used 0.99 as the number of components to keep for
the PCA decomposition, perplexity equal to 25, and the maximum
number of iterations for the optimization equal to 2000 for t-SNE.

5 RESULTS

In this section, we compare the geometric micro metrics computed
for each trajectory generation method against real user traces. Later
in Section[5.2] we visualize the different generation methods in terms
of the latent features they replicate. Finally, in Section[5.3] we assess
the degree to which the different synthesized traces replicate the
performance characteristics of real user traces in terms of simulated
recognition accuracy.

5.1 Geometric Micro Metrics

The micro metrics characterize the trajectories. The different types
of trajectories all have a high probability of curvature around 180
degrees, while Jerk-Minimization trajectories exhibit an even higher
probability density. Trajectories produced by RNN have a higher
probability density for curvature at zero degrees. For all the micro
metrics, it is the GAN-Transfer trajectories that show the closest
KL distance to the real trajectories. Therefore, if design automation
is the purpose, GAN-Transfer is most desired as it not only has
the smallest KL divergence on those micro metrics, but it can also
condition on arbitrary keyboard layouts and phrases. The Jerk-
Minimization and the RNN-based models are good choices to start
with as well since they can all generate trajectories according to
arbitrary keyboard layout and phrases.
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Figure 9: Illustration of vicinity V (¢).

5.2 Latent Space Distance

Visualization through dimensionality reduction can make high-
dimensional data easier to interpret. We first use a two-layer Bi-
LSTM model with 400 neurons each layer to extract the latent feature
vectors from the data. Then we perform dimensionality reduction us-
ing first Principal Component Analysis (PCA) for efficiency, which
is then followed by t-Distributed Stochastic Neighbor Embedding
(t-SNE) for accuracy. Figureﬂ;fl shows that GAN-based trajectories
lie closest to the original trajectories in latent space. This suggests
that this model may perform well in training deep neural networks
since deep neural networks first extract latent features from the data
and then perform recognition by outputting a probability distribution
of outputs based on those latent features. It is noted that the simi-
larity/distance measure from micro metrics and latent space can be
different for the trajectories. This is because latent space visualiza-
tion accounts for more latent attributes that cannot be characterized
by micro metrics, such as temporal correlation. Temporal correlation
is an important factor in training deep-learning based models as it
contains temporal information. For example, temporal information
can help to strengthen the confidence of the identification of turning
points, gesture error and ambiguous spatial similarity.

5.3 Accuracy

The synthesized trajectories should have some human-like errors,
as illustrated in Figure [5a] Figure [5a]captures the degree of varia-
tion exhibited in the traces. This accuracy metric is produced by
passing the trajectories to the aforementioned simulated recognizer
that uses the tolerance region as the key recognition condition. This
recognizer is neutral and does not bias towards any type of data. Ac-
curacy is measured as the smallest tolerance length that allows the
trace to pass the simulated recognition model. Therefore, the lower
the number of phrases to fail the simulated recognition model, the
higher the accuracy. Participants shown in red in Figure [5a]exhibit
high accuracy since their traces mostly pass a tolerance length of
20 mm. Participants shown in yellow in Figure[5ahave difficulty in

gesturing accurate traces. Such participants often failed to pass the
simulated recognition model and were required to repeat the trace.
The participants indicated in yellow gestured a variety of inconsis-
tent traces that lead to many of their traces failing the simulated
recognition model, even at 40 mm. However, participants indicated
in red demonstrate a very consistent approach to gesturing with little
variation. Participants indicated in blue, which also represent the
majority of the participants, demonstrate a good balance between
variation and accuracy. They exhibit variability in gesturing within
30 mm and accuracy between 30 mm and 50 mm. Figure[5b]shows
that trajectories from the RNN-based approach only learn from the
behavior of the majority while it ignores the dynamics exhibited
by the minority. In contrast, the trajectories from both the Jerk-
Minimization and GAN-based approaches achieve a good balance
between accuracy and error.

6 DiscussiON

The results presented in Secti0n|§]highlight the various capabilities
and limitations of the trajectory generation methods. However, as
previously stated, an important higher-level consideration is whether
a generative model can produce trajectories for unobserved phrases
and layouts. Table |I| summarizes the capabilities of the models in
this regard. Apart from the GAN-Imitation model, it is an intrinsic
ability for all the models to be able to generate synthetic data from
unobserved phrases and keyboard layouts. The Jerk-Minimization
model produces trajectories based on the absolute positions of the
via-points, which can be generated from an arbitrary input phrase
and keyboard layout. The novel training scheme for the RNN-based
generation model, which incorporates synthetic traces from the Jerk-
Minimization model, also allows the model to learn a mapping
from text and keyboard layouts to trajectories. Finally, the GAN-
Transfer generation model transfers realistic and representative styles
and specific human behaviors from captured real data to synthetic
trajectories produced by simply connecting key centers.

The analysis in this paper is constrained to a set of phrases of
roughly the same length. For the Jerk-Minimization model, the
quality of generated trajectories is independent of the number of
words given that it is a deterministic movement model. Both the
RNN-based and GAN-based models are composed of LSTM cells
which can account for long temporal dependencies. Nevertheless,
the quality of these models is dependent on the total number of
trajectory points and may be negatively impacted by significant
increases in phrase length. It is possible to mitigate the potential
negative effects of increasing phrase length by reducing the assumed
number of trajectory points associated with each character.

The micro metrics introduced in Sectiond3]are chosen to char-
acterize how closely the synthesized trajectories reflect human-like
behaviors. There are several qualities observable in the synthetic
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Figure 11: The latent space visualization of the four types of syn-
thetic trajectories compared to the real trajectory through dimension-
ality reduction. Each colored cluster represents a group of featured
trajectories. We note that GAN-Transfer and Imitation trajectories
lie closest to the original trajectories. This suggests that the latent
attributes of the two types of trajectories exhibit a closer distance to
the latent attributes of real trajectories.

data indicating good alignment with the behaviors and features
present in real human trajectories. First, the models tend to follow
a straight line between via-points (as highlighted by the linearity
metric), which is consistent with observed patterns of motor con-
trol in terms of energy minimization. Second, the models produce
qualities intuitively expected given the keyboard layout: the aspect
metric, where -1 indicates width, is much greater than height, which
correctly suggests that the keyboard has a larger width than height
while the slope metric correctly suggests that the keyboard is sym-
metric. Third, the synthetic traces contain sharp turns at some of the
via-points but otherwise remain smooth over their trajectories (based
on the curvature and curliness metrics), which is in alignment with
what is typically observed in user-generated traces. Finally, Figure[J]
shows that all models exhibit noise levels close to those observed in
human-generated traces. These broad consistencies all suggest that
our models exhibit human-like behaviors.

7 LIMITATIONS AND FUTURE WORK

We have demonstrated the potential of using state-of-the-art genera-
tive models to synthesize realistic lower dimensional human motion
trajectories. There are many higher dimensional human motion
trajectories involving spatial information that are also suitable for
this treatment. Variants of high dimensional trajectories can be pro-
duced from the Imaginative GAN since it enables the data to transfer

styles internally. However, generating conditional trajectories condi-
tioned on other inputs, such as performing continuous hand gestures
or human motion based on a continuous input, is challenging. A
promising avenue of future work is to simulate high-dimensional
human motion data and generate data that is conditioned on other
inputs. We are interested in exploring this challenge using rein-
forcement learning. Another avenue of future work is to use the
Jerk-Minimization model, RNN-based model and the GAN-Transfer
synthesizer to automate aspects of mid-air gesture keyboard design
by exploiting Bayesian optimization and comparing the performance
of the three approaches. A deep-learning based recognition model
can also be trained with synthetic data, preferably from the GAN-
based synthesizers, to prevent over-fitting. We hypothesize this will
achieve better performance than using the limited real dataset.

8 CONCLUSIONS

In this paper we have proposed and explored four approaches for
generating synthetic trajectories that are suitable for different sce-
narios. The different approaches produce trajectories that exhibit
distinct characteristics and unique properties, which can be exploited
depending on the specific design problems at hand. For example,
for design optimization, Jerk-Minimization may be the preferred
option since the model easily adapts to new layouts and can gen-
erate traces for unseen phrases. For training a deep learning-based
recognition model the GAN-Imitation and GAN-Transfer models
are preferable since they exhibit a closer latent space distribution to
real data. Overall, GAN-Transfer demonstrates well-rounded prop-
erties across all evaluation metrics, including accuracy, latent space
distance, conditioning on arbitrary keyboard layout and phrases, and
optimization time. We anticipate that these different approaches to
simulating realistic human motion trajectories will provide a useful
tool in advancing the state-of-the-art of mid-air gesture typing in
augmented and virtual reality.
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